Displaying all 6 publications

Abstract:
Sort:
  1. Rather SU, Sulaimon AA, Shariff AM, Qasim A, Bamufleh HS, Alhumade HA, et al.
    Chemosphere, 2023 Oct;337:139290.
    PMID: 37348612 DOI: 10.1016/j.chemosphere.2023.139290
    Carbon dioxide is a major greenhouse gas that is responsible for global warming and renders harmful effects on the atmosphere. The unconstrained release of CO2 into the atmosphere should be prevented and various techniques have been developed in this regard to capture CO2 using different solvents and other compounds. Ionic liquids are a suitable candidate to capture CO2 due to their better solubility behaviour. In this work, two ionic liquids namely tetramethylammonium bromide (TMAB) and tetraethylammonium bromide (TEAB) are employed experimentally to capture CO2 and investigate their solubility behaviour. The study is performed at the temperature values of 303 K, 313 K, and 323 K and the pressure values of 5, 10, 15, and 20 bar equivalent to 0.5, 1.0, 1.5, and 2.0 MPa respectively. The concentrations of both ionic liquid solutions are 2.5 wt%, 5.0 wt%, and 10.0 wt%. The solubility results are considered in terms of mol fraction which is the ratio of moles of CO2 captured per moles of ionic liquid. The density and viscosity values are also determined for both compounds at respective conditions. COSMO-RS is used to generate the sigma profile, sigma surface, and Henry's constant of the ions involved in the study. CO2 is found to be soluble in both ionic liquids, but TEAB showed better solubility behaviour as compared to TMAB. The solubility of CO2 is found to be increasing with the increase in pressure while it decreases with the increase in temperature.
  2. Rather SU, Shariff AM, Sulaimon AA, Bamufleh HS, Qasim A, Saad Khan M, et al.
    Chemosphere, 2023 Jan;311(Pt 2):137102.
    PMID: 36334738 DOI: 10.1016/j.chemosphere.2022.137102
    Activity coefficient values offer insight into the intermolecular interactions between the solute and the solvent and the deviation from the ideal behavior. CO2 capture from different industrial processes is a globally pertinent issue and the search for suitable chemicals is required. To address the issue, knowledge of activity coefficient values is crucial for CO2 separation-based process. In this regard, a correlation is developed that predicts the coefficient of CO2 activity in ionic liquids by multi-nonlinear regression analysis. The correlation is developed between the pressure range of 1-50 bar and the temperature range of 298.15-33.15 K for mole fractions of 0.3, 0.5, and 0.7. Outliers' analysis is performed using the boxplot method to determine the suitability of ranges of the selected input parameters. The preceding literature does not predict the activity coefficient in relatively lower to higher temperature and pressure ranges for CO2 solubility in ionic liquids. Initially, the activity coefficient values from COSMO-RS were obtained and compared with the correlation results. The COSMO-RS and the correlation predicted results were subsequently validated with the experimental data. The average absolute error (AAE%) of the predicted correlation values is 19.53% while the root mean square error (RMSE) value is 0.465. The correlation can be used in the future to predict the CO2 activity coefficient values in ionic liquids to facilitate qualitative analyses of their CO2 capture efficiency.
  3. Rather SU, Rahman MH, Bamufleh HS, Alhumade H, Taimoor AA, Saeed U, et al.
    Int J Biol Macromol, 2023 Apr 30;235:123761.
    PMID: 36812977 DOI: 10.1016/j.ijbiomac.2023.123761
    The polymer-surfactant mixture has usages in numerous industries mainly in the production of daily used materials. Herein, the micellization and phase separation nature of the sodium dodecyl sulfate (SDS) and TX-100 along with a synthetic water-soluble polymer-polyvinyl alcohol (PVA) have been conducted using conductivity and cloud point (CP) measurement tools. In the case of micellization study of SDS + PVA mixture by conductivity method, the CMC values were obtained to be dependent on the categories and extent of additives as well as temperature variation. Both categories of studies were performed in aq. solutions of sodium chloride (NaCl), sodium acetate (NaOAc), and sodium benzoate (NaBenz) media. The CP values of TX 100 + PVA were decreased and enhanced in simple electrolytes and sodium benzoate media respectively. In all cases, the free energy changes of micellization (∆Gm0) and clouding (∆Gc0) were obtained as negative and positive respectively. The enthalpy (∆Hm0) and entropy (∆Sm0) changes for SDS + PVA system micellization was negative and positive respectively in aq. NaCl and NaBenz media, and in aq. NaOAc medium the ∆Hm0 values were found negative while ∆Sm0 were found negative except at the highest studied temperature (323.15 K). The enthalpy-entropy compensation of both processes was also assessed and described clearly.
  4. GBD 2019 Lip, Oral, and Pharyngeal Cancer Collaborators, Cunha ARD, Compton K, Xu R, Mishra R, Drangsholt MT, et al.
    JAMA Oncol, 2023 Oct 01;9(10):1401-1416.
    PMID: 37676656 DOI: 10.1001/jamaoncol.2023.2960
    IMPORTANCE: Lip, oral, and pharyngeal cancers are important contributors to cancer burden worldwide, and a comprehensive evaluation of their burden globally, regionally, and nationally is crucial for effective policy planning.

    OBJECTIVE: To analyze the total and risk-attributable burden of lip and oral cavity cancer (LOC) and other pharyngeal cancer (OPC) for 204 countries and territories and by Socio-demographic Index (SDI) using 2019 Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study estimates.

    EVIDENCE REVIEW: The incidence, mortality, and disability-adjusted life years (DALYs) due to LOC and OPC from 1990 to 2019 were estimated using GBD 2019 methods. The GBD 2019 comparative risk assessment framework was used to estimate the proportion of deaths and DALYs for LOC and OPC attributable to smoking, tobacco, and alcohol consumption in 2019.

    FINDINGS: In 2019, 370 000 (95% uncertainty interval [UI], 338 000-401 000) cases and 199 000 (95% UI, 181 000-217 000) deaths for LOC and 167 000 (95% UI, 153 000-180 000) cases and 114 000 (95% UI, 103 000-126 000) deaths for OPC were estimated to occur globally, contributing 5.5 million (95% UI, 5.0-6.0 million) and 3.2 million (95% UI, 2.9-3.6 million) DALYs, respectively. From 1990 to 2019, low-middle and low SDI regions consistently showed the highest age-standardized mortality rates due to LOC and OPC, while the high SDI strata exhibited age-standardized incidence rates decreasing for LOC and increasing for OPC. Globally in 2019, smoking had the greatest contribution to risk-attributable OPC deaths for both sexes (55.8% [95% UI, 49.2%-62.0%] of all OPC deaths in male individuals and 17.4% [95% UI, 13.8%-21.2%] of all OPC deaths in female individuals). Smoking and alcohol both contributed to substantial LOC deaths globally among male individuals (42.3% [95% UI, 35.2%-48.6%] and 40.2% [95% UI, 33.3%-46.8%] of all risk-attributable cancer deaths, respectively), while chewing tobacco contributed to the greatest attributable LOC deaths among female individuals (27.6% [95% UI, 21.5%-33.8%]), driven by high risk-attributable burden in South and Southeast Asia.

    CONCLUSIONS AND RELEVANCE: In this systematic analysis, disparities in LOC and OPC burden existed across the SDI spectrum, and a considerable percentage of burden was attributable to tobacco and alcohol use. These estimates can contribute to an understanding of the distribution and disparities in LOC and OPC burden globally and support cancer control planning efforts.

  5. Global Burden of Disease 2019 Cancer Collaboration, Kocarnik JM, Compton K, Dean FE, Fu W, Gaw BL, et al.
    JAMA Oncol, 2022 Mar 01;8(3):420-444.
    PMID: 34967848 DOI: 10.1001/jamaoncol.2021.6987
    IMPORTANCE: The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) provided systematic estimates of incidence, morbidity, and mortality to inform local and international efforts toward reducing cancer burden.

    OBJECTIVE: To estimate cancer burden and trends globally for 204 countries and territories and by Sociodemographic Index (SDI) quintiles from 2010 to 2019.

    EVIDENCE REVIEW: The GBD 2019 estimation methods were used to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs) in 2019 and over the past decade. Estimates are also provided by quintiles of the SDI, a composite measure of educational attainment, income per capita, and total fertility rate for those younger than 25 years. Estimates include 95% uncertainty intervals (UIs).

    FINDINGS: In 2019, there were an estimated 23.6 million (95% UI, 22.2-24.9 million) new cancer cases (17.2 million when excluding nonmelanoma skin cancer) and 10.0 million (95% UI, 9.36-10.6 million) cancer deaths globally, with an estimated 250 million (235-264 million) DALYs due to cancer. Since 2010, these represented a 26.3% (95% UI, 20.3%-32.3%) increase in new cases, a 20.9% (95% UI, 14.2%-27.6%) increase in deaths, and a 16.0% (95% UI, 9.3%-22.8%) increase in DALYs. Among 22 groups of diseases and injuries in the GBD 2019 study, cancer was second only to cardiovascular diseases for the number of deaths, years of life lost, and DALYs globally in 2019. Cancer burden differed across SDI quintiles. The proportion of years lived with disability that contributed to DALYs increased with SDI, ranging from 1.4% (1.1%-1.8%) in the low SDI quintile to 5.7% (4.2%-7.1%) in the high SDI quintile. While the high SDI quintile had the highest number of new cases in 2019, the middle SDI quintile had the highest number of cancer deaths and DALYs. From 2010 to 2019, the largest percentage increase in the numbers of cases and deaths occurred in the low and low-middle SDI quintiles.

    CONCLUSIONS AND RELEVANCE: The results of this systematic analysis suggest that the global burden of cancer is substantial and growing, with burden differing by SDI. These results provide comprehensive and comparable estimates that can potentially inform efforts toward equitable cancer control around the world.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links