Infection after joint replacement surgery is problematic and difficult to treat. The utility of antibiotic laden bone cement for reduction of risk of infection in primary and revision joint replacement surgery has already been established in many studies. In this study, we examined the efficacy of bone cement containing cefuroxime, employing a modified in vitro Kirby-Bauer susceptibility model for investigation of 13 strains of organisms that are found in orthopaedic infections. Organisms investigated were broad spectrum and effective for Gram-positive, Gram-negative, aerobic organisms and anaerobes. Simplex P with added cefuroxime was effective against 8 out of 13 strains. Cefuroxime is stable during exothermic polymerisation of the cement, and is released from the cement at concentrations high enough to inhibit the growth of most organisms encountered after joint arthroplasty.
Deep surgical site infection is a devastating consequence of total joint arthroplasty. The use of antibiotic impregnated bone cement is a well-accepted adjunct for treatment of established infection and prevention of deep orthopaedic infection. It allows local delivery of the antibiotic at the cement-bone interface and sustained release of antibiotic provides adequate antibiotic coverage after the wound closure. Preclinical testing, randomised and clinical trials indicate that the use of antibiotic-impregnated bone cement is a potentially effective strategy in reducing the risk of deep surgical site infection following total joint arthroplasty. The purpose of this study was to assess antibacterial activity of erythromycin and colistin impregnated bone cement against strains of organisms' representative of orthopaedic infections including Gram-positive and Gram-negative aerobic organisms: Staphylococcus aureus, coagulase-negative Staphylococci, Enterococcus sp., Proteus sp., Klebsiella sp., Pseudomonas sp., and Escherichia coli. Pre-blended Simplex P bone cement with the addition of erythromycin and colistin (Howemedica Inc) was mixed thoroughly with 20ml liquid under sterile conditions to produce uniform cylindrical discs with a diameter of 14mm and thickness of 2mm. 24-48 hour agar cultures of Staphylococcus aureus, coagulase-negative Staphylococci, Enterococcus sp.,Proteus sp., Klebsiella sp.,Pseudomonas sp., and Escherichia coli were used for the agar diffusion tests. The agar plates were streaked for confluent growth followed by application of erythromycin and colistin impregnated bone cement disc to each agar plate. The plates were incubated at 30 degrees C and examined at 24, 48, 72 hours, and four and five days after the preparation of the impregnated cement. The susceptibility of Staphylococcus aureus to the control discs was most clearly demonstrated showing a distinct zone of inhibition. The zone observed around coagulase-negative Staphylococci, Klebsiella sp., Pseudomonas sp., and Escherichia coli were also significant. However, there was no zone of inhibition or signs of antibacterial activity at the cemented surface were detected around discs with Enterococcus sp. and Proteus sp. The results showed that Simplex P bone cement with the addition of erythromycin and colistin was effective against most of the broad spectrum organisms encountered during total joint arthroplasty. The activity of Simplex P bone cement impregnated with erythromycin and colistin is mainly during the first 72 hours.
The purpose of this investigation was to evaluate the usefulness of a co-agglutination procedure for the typing of Flavobacterium meningosepticum. The sensitivity and specificity of the co-agglutination test was compared to the slide agglutination test using reference strains of the bacterial species. Antisera were characterized by both technics to determine their titer and working dilution. The specificity of the sera was assessed by performing tests which include strains of other species and serotypes. A collection of 47 strains of F. meningosepticum isolated from clinical specimens were typed by both co-agglutination and slide agglutination methods. Co-agglutination proved to be markedly more specific than the slide procedure although both methods were similar in sensitivity. It was concluded that co-agglutination proved to be an excellent method for the serotyping of F. meningosepticum.