The rapid expansion of wireless monitoring and surveillance applications in several domains reinforces the trend of exploiting emerging technologies such as the cognitive radio. However, these technologies have to adjust their working concepts to consider the common characteristics of conventional wireless sensor networks (WSNs). The cognitive radio sensor network (CRSN), still an immature technology, has to deal with new networks that might have different types of data, traffic patterns, or quality of service (QoS) requirements. In this paper, we design and model a new cognitive radio-based medium access control (MAC) algorithm dealing with the heterogeneous nature of the developed networks in terms of either the traffic pattern or the required QoS for the node applications. The proposed algorithm decreases the consumed power on several fronts, provides satisfactory levels of latency and spectrum utilization with efficient scheduling, and manages the radio resources for various traffic conditions. An intensive performance evaluation is conducted to study the impact of key parameters such as the channel idle time length, node density, and the number of available channels. The performance evaluation of the proposed algorithm shows a better performance than the comparable protocols. Moreover, the results manifest that the proposed algorithm is suitable for real time monitoring applications.
Resource bound security solutions have facilitated the mitigation of spatio-temporal attacks by altering protocol semantics to provide minimal security while maintaining an acceptable level of performance. The Dynamic Window Secured Implicit Geographic Forwarding (DWSIGF) routing protocol for Wireless Sensor Network (WSN) has been proposed to achieve a minimal selection of malicious nodes by introducing a dynamic collection window period to the protocol's semantics. However, its selection scheme suffers substantial packet losses due to the utilization of a single distance based parameter for node selection. In this paper, we propose a Fuzzy-based Geographic Forwarding protocol (FuGeF) to minimize packet loss, while maintaining performance. The FuGeF utilizes a new form of dynamism and introduces three selection parameters: remaining energy, connectivity cost, and progressive distance, as well as a Fuzzy Logic System (FLS) for node selection. These introduced mechanisms ensure the appropriate selection of a non-malicious node. Extensive simulation experiments have been conducted to evaluate the performance of the proposed FuGeF protocol as compared to DWSIGF variants. The simulation results show that the proposed FuGeF outperforms the two DWSIGF variants (DWSIGF-P and DWSIGF-R) in terms of packet delivery.
This paper investigated the throughput performance of a secondary user (SU) for a random primary user (PU) activity in a realistic experimental model. This paper proposed a sensing and frame duration of the SU to maximize the SU throughput under the collision probability constraint. The throughput of the SU and the probability of collisions depend on the pattern of PU activities. The pattern of PU activity was obtained and modelled from the experimental data that measure the wireless local area network (WLAN) environment. The WLAN signal has detected the transmission opportunity length (TOL) which was analyzed and clustered into large and small durations in the CTOL model. The performance of the SU is then analyzed and compared with static and dynamic PU models. The results showed that the SU throughput in the CTOL model was higher than the static and dynamic models by almost 45% and 12.2% respectively. Furthermore, the probability of collisions in the network and the SU throughput were influenced by the value of the minimum contention window and the maximum back-off stage. The simulation results revealed that the higher contention window had worsened the SU throughput even though the channel has a higher number of TOLs.
As a possible implementation of a low-power wide-area network (LPWAN), Long Range (LoRa) technology is considered to be the future wireless communication standard for the Internet of Things (IoT) as it offers competitive features, such as a long communication range, low cost, and reduced power consumption, which make it an optimum alternative to the current wireless sensor networks and conventional cellular technologies. However, the limited bandwidth available for physical layer modulation in LoRa makes it unsuitable for high bit rate data transfer from devices like image sensors. In this paper, we propose a new method for mangrove forest monitoring in Malaysia, wherein we transfer image sensor data over the LoRa physical layer (PHY) in a node-to-node network model. In implementing this method, we produce a novel scheme for overcoming the bandwidth limitation of LoRa. With this scheme the images, which requires high data rate to transfer, collected by the sensor are encrypted as hexadecimal data and then split into packets for transfer via the LoRa physical layer (PHY). To assess the quality of images transferred using this scheme, we measured the packet loss rate, peak signal-to-noise ratio (PSNR), and structural similarity (SSIM) index of each image. These measurements verify the proposed scheme for image transmission, and support the industrial and academic trend which promotes LoRa as the future solution for IoT infrastructure.
It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach.
The increase in drone misuse by civilian apart from military applications is alarming and need to be addressed. This drone is characterized as a low altitude, slow speed, and small radar cross-section (RCS) (LSS) target and is considered difficult to be detected and classified among other biological targets, such as insects and birds existing in the same surveillance volume. Although several attempts reported the successful drone detection on radio frequency-based (RF), thermal, acoustic, video imaging, and other non-technical methods, however, there are also many limitations. Thus, this paper investigated a micro-Doppler analysis from drone rotating blades for detection in a special Forward Scattering Radar (FSR) geometry. The paper leveraged the identified benefits of FSR mode over conventional radars, such as improved radar cross-section (RCS) value irrespective of radar absorbing material (RAM), direct signal perturbation, and high resolutions. To prove the concept, a received signal model for micro-Doppler analysis, a simulation work, and experimental validation are elaborated and explained in the paper. Two rotating blades aspect angle scenarios were considered, which are (i) when drone makes a turn, the blade cross-sectional area faces the receiver and (ii) when drone maneuvers normally, the cross-sectional blade faces up. The FSR system successfully detected a commercial drone and extracted the micro features of a rotating blade. It further verified the feasibility of using a parabolic dish antenna as a receiver in FSR geometry; this marked an appreciable achievement towards the FSR system performance, which in future could be implemented as either active or passive FSR system.
Channel rendezvous is an initial and important process for establishing communications between secondary users (SUs) in distributed cognitive radio networks. Due to the drawbacks of the common control channel (CCC) based rendezvous approach, channel hopping (CH) has attracted a lot of research interests for achieving blind rendezvous. To ensure rendezvous within a finite time, most of the existing CH-based rendezvous schemes generate their CH sequences based on the whole global channel set in the network. However, due to the spatial and temporal variations in channel availabilities as well as the limitation of SUs sensing capabilities, the local available channel set (ACS) for each SU is usually a small subset of the global set. Therefore, following these global-based generated CH sequences can result in extensively long time-to-rendezvous (TTR) especially when the number of unavailable channels is large. In this paper, we propose two matrix-based CH rendezvous schemes in which the CH sequences are generated based on the ACSs only. We prove the guaranteed and full diversity rendezvous of the proposed schemes by deriving the theoretical upper bounds of their maximum TTRs. Furthermore, extensive simulation comparisons with other existing works are conducted which illustrate the superior performance of our schemes in terms of the TTR metrics.
The field of space weather research has witnessed growing interest in the use of machine learning techniques. This could be attributed to the increasing accessibility of data, which has created a high demand for investigating scientific phenomena using data-driven methods. The dataset, which is based on bibliographic records from the Web of Science (WoS) and Scopus, was compiled over the last several decades and discusses multidisciplinary trends in this topic while revealing significant advances in current knowledge. It provides a comprehensive examination of trends in publication characteristics, with a focus on publications, document sources, authors, affiliations, and frequent word analysis as bibliometric indicators, all of which were analysed using the Biblioshiny application on the web. This dataset serves as the document profile metrics for emphasising the breadth and progress of current and previous studies, providing useful insights into hotspots for projection research subjects and influential entities that can be identified for future research.