Displaying all 4 publications

Abstract:
Sort:
  1. Shariat M, Samsudin MW, Zakaria Z
    Molecules, 2012 Sep 28;17(10):11607-15.
    PMID: 23023686
    A new and efficient method has been designed to prepare 2,2'-arylene-substituted bis(4H-3,1-benzoxazin-4-one) derivatives by using the mixture of cyanuric chloride and N,N-dimethylformamide in a microwave-assisted reaction. The method used and presented here has good rate enhancement and excellent yields.
  2. Shariat M, Samsudin MW, Zakaria Z
    Chem Cent J, 2013 Mar 27;7(1):58.
    PMID: 23537478 DOI: 10.1186/1752-153X-7-58
    BACKGROUND: The derivatives of 2-substituted 4H-3,1-benzoxazin-4-one belong to a significant category of heterocyclic compounds, which have shown a wide spectrum of medical and industrial applications.

    RESULTS: A new and effective one-pot method for the synthesis of 2-substituted 4H-3,1-benzoxazin-4-one derivatives is described in this paper. By using the iminium cation from a mixture of cyanuric chloride and dimethylformamide as a cyclizing agent, a series of 2-substituted 4H-3,1-benzoxazin-4-one derivatives was synthesized in high yield under mild conditions and simple workup.

    CONCLUSIONS: The iminium cation from a mixture of cyanuric chloride and N,N-dimethylformamide is an effective cyclizing agent for the room temperature one-pot synthesis of 2-substituted 4H-3,1-benzoxazin-4-one derivatives in high yields through a cyclodehydration reaction. Furthermore, the method was performed under mild conditions characterized by simplified pathways and workup, minimized energy, and fewer reaction steps, compared with the previous methods. The proposed method, which is a simpler alternative than the published methods, is applicable for the synthesis of other 2-substituted 4H-3,1-benzoxazin-4-one derivatives.

  3. Mie R, Samsudin MW, Din LB, Ahmad A, Ibrahim N, Adnan SN
    Int J Nanomedicine, 2014;9:121-7.
    PMID: 24379670 DOI: 10.2147/IJN.S52306
    Development of a green chemistry process for the synthesis of silver nanoparticles has become a focus of interest. This would offer numerous benefits, including ecofriendliness and compatibility for biomedical applications. Here we report the synthesis of silver nanoparticles from the reduction of silver nitrate and an aqueous extract of the lichen Parmotrema praesorediosum as a reductant as well as a stabilizer. The physical appearance of these silver nanoparticles was characterized using ultraviolet-visible spectroscopy, electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction techniques. The results show that silver nanoparticles synthesized using P. praesorediosum have an average particle size of 19 nm with a cubic structure. The antibacterial activity of the synthesized silver nanoparticles was tested against eight micro-organisms using the disk diffusion method. The results reveal that silver nanoparticles synthesized using P. praesorediosum have potential antibacterial activity against Gram-negative bacteria.
  4. Bharudin I, Abdul Rahim SN, Abu Bakar MF, Ibrahim SN, Kamaruddin S, Latif MT, et al.
    Data Brief, 2018 Aug;19:2416-2419.
    PMID: 30229114 DOI: 10.1016/j.dib.2018.07.020
    Lichen is a symbiotic organism that exists as a single composite body consisting of a mycobiont (fungus) and a photobiont (algae or a cyanobacterium). Many lichen species are considered as extremophiles due to their tolerance to radiation, desiccation, temperature and pollution. However, not all lichen species are tolerant to harsh environmental conditions as several species are sensitive for example to nitrogen, sulphur, acidity, heavy metals, halogens (e.g. fluoride) and ozone. Thus, to better understand why some lichens can withstand exposure to pollutants as opposed to those that are susceptible, we focused on the lichen species of Dirinaria known for their wide distribution in the tropics, subtropics and pantropical, and moderate tolerance to air pollution. Their moderate tolerance to air pollution affords them to thrive in good air quality environments as well as polluted air environments. Lichen samples of Dirinaria sp., UKM-J1 and UKM-K1, were respectively collected from two areas with different levels of air quality based on Air Pollutant Index or API (with index pollutant criteria of PM10, carbon monoxide, ozone, nitrogen dioxide and sulfur dioxide) in the outskirt of Jerantut (UKM-J1), a rural area in the middle of Peninsular Malaysia and the township of Klang (UKM-K1), in a busy area of the Klang Valley, Malaysia. API was monitored throughout 2012-2013 whereby the sample collection site in Klang showed markedly higher concentrations of pollutants in all the index pollutant criteria as compared to that of Jerantut. We performed transcriptome sequencing using Illumina RNA-seq technology and de novo assembly of the transcripts from the lichen samples. Raw reads from both libraries were deposited in the NCBI database with the accession number SRP138994.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links