Displaying all 5 publications

Abstract:
Sort:
  1. Osman WNAW, Selvarajah D, Samsuri S
    Molecules, 2021 Aug 11;26(16).
    PMID: 34443445 DOI: 10.3390/molecules26164856
    Saponin is a biopesticide used to suppress the growth of the golden apple snail population. This study aims to determine the stabilized conditions for saponin storage. The maceration process was used for saponin extraction, and for saponin concentration, progressive freeze concentration (PFC) was used. Afterwards, stability analysis was performed by storing the sample for 21 days in two conditions: Room temperature (26 °C) and cold room (10 °C). The samples kept in a cold room were sterilized samples that undergo thermal treatment by placing the sample in the water bath. The non-sterilized samples were kept in room temperature condition for 21 days. The results showed that saponin stored in the cold room (sterilized sample) has low degradation with higher concentration than those stored at room temperature in stability analysis with the highest saponin concentration (0.730 mg/mL) at a concentration temperature of -6 °C and concentration time of 15 min. The lowest saponin concentration obtained by saponin stored at room temperature (non-sterilized sample) is 0.025 mg/mL at a concentration temperature of -6 °C and concentration time of 10 min. Thus, the finding concluded that saponin is sensitive to temperature. Hence, the best storage condition to store saponin after thermal treatment is to keep it in a cold room at 10 °C.
  2. Mulyati S, Aprilia S, Muchtar S, Syamsuddin Y, Rosnelly CM, Bilad MR, et al.
    Polymers (Basel), 2022 Jan 03;14(1).
    PMID: 35012208 DOI: 10.3390/polym14010186
    Potential use of tannic acid (TA) as an additive for fabrication of polyvinylidene difluoride (PVDF) membrane was investigated. The TA was introduced by blending into the dope solution with varying concentrations of 0, 1, 1.5, and 2 wt%. The prepared membranes were characterized and evaluated for filtration of humic acid (HA) solution. The stability of the membrane under harsh treatment was also evaluated by one-week exposure to acid and alkaline conditions. The results show that TA loadings enhanced the resulting membrane properties. It increased the bulk porosity, water uptake, and hydrophilicity, which translated into improved clean water flux from 15.4 L/m2.h for the pristine PVDF membrane up to 3.3× for the TA-modified membranes with the 2 wt% TA loading. The flux recovery ratio (FRR) of the TA-modified membranes (FRRs = 78-83%) was higher than the pristine one (FRR = 58.54%), with suitable chemical stability too. The improved antifouling property for the TA-modified membranes was attributed to their enhanced hydrophilicity thanks to improved morphology and residual TA in the membrane matric.
  3. Gil N, Quinteros G, Blanco M, Samsuri S, Amran NA, Orellana-Palma P, et al.
    Foods, 2023 Feb 15;12(4).
    PMID: 36832909 DOI: 10.3390/foods12040836
    Block freeze concentration (BFC) is considered an emerging technology which allows the acquiring of high quality organoleptic products, due to the low temperatures employed. In this study we have outlined how the vacuum-assisted BFC of whey was investigated. The effects of vacuum time, vacuum pressure, and the initial solids concentration in whey were studied. The results obtained show that the three variables significantly affect each of the following parameters analysed: solute yield (Y) and concentration index (CI). The best Y results were obtained at a pressure of 10 kPa, 7.5 °Bx, and 60 min. For CI parameter, the highest values were given at 10 kPa, 7.5 °Bx, and 20 min, respectively. In a second phase, by applying the conditions that provide higher solute yield to three different types of dairy whey, Y values of 70% or higher are reached in a single step, while that the CI of lactose are higher than those of soluble solids. Therefore, it is possible to recover, in a single step, at least 70% of the lactose contained in the initial whey samples. This suggests that vacuum-assisted BFC technology may be an interesting alternative for the recovery of lactose contained in whey.
  4. Wan Osman WNA, Mat Nawi NI, Samsuri S, Bilad MR, Khan AL, Hunaepi H, et al.
    Heliyon, 2021 Jun;7(6):e07367.
    PMID: 34222699 DOI: 10.1016/j.heliyon.2021.e07367
    Microalgae-based products have gained growing interest leading to an increase in large-scale cultivation. However, the high energy associated with microalgae harvesting becomes one of the bottlenecks. This study evaluated an energy-efficient microalga harvesting via ultra-low-pressure membrane (ULPM) filtration (<20 kPa) in combination with aeration. ULPM offered various benefits especially in terms of reducing the energy consumption due to it operated under low transmembrane pressure (TMP). High TMP often associated with high pumping energy hence would increase the amount of energy consumed. In addition, membrane with high TMP would severely affect by membrane compaction. Results showed that membrane compaction leads to up to 66 % clean water permeability loss when increasing the TMP from 2.5 to 19 kPa. The Chlorella vulgaris broth permeabilities decreased from 1660 and 1250 to 296 and 251 L/m2hrbar for corresponding TMPs for system with and without aeration, respectively. However, it was found that membrane fouling was more vulnerable at low TMP due to poor foulant scouring from a low crossflow velocity in which up to 56 % of permeability losses were observed. Membrane fouling is the biggest drawback of membrane system as it would reduce the membrane performance. In this study, aeration was introduced as membrane fouling control to scour-off the foulant from membrane surface and pores. In terms of energy consumption, it was observed that the specific energy consumption for the ULPM were very low of up to 4.4 × 10-3 kWh/m3. Overall, combination of low TMP with aeration offers lowest energy input.
  5. Osman A, Mat Nawi NI, Samsuri S, Bilad MR, Shamsuddin N, Khan AL, et al.
    Polymers (Basel), 2020 Feb 12;12(2).
    PMID: 32059397 DOI: 10.3390/polym12020432
    A membrane bioreactor enhances the overall biological performance of a conventional activated sludge system for wastewater treatment by producing high-quality effluent suitable for reuse. However, membrane fouling hinders the widespread application of membrane bioreactors by reducing the hydraulic performance, shortening membrane lifespan, and increasing the operational costs for membrane fouling management. This study assesses the combined effect of membrane surface corrugation and a tilted panel in enhancing the impact of air bubbling for membrane fouling control in activated sludge filtration, applicable for membrane bioreactors. The filterability performance of such a system was further tested under variable parameters: Filtration cycle, aeration rate, and intermittent aeration. Results show that a combination of surface corrugation and panel tilting enhances the impact of aeration and leads to 87% permeance increment. The results of the parametric study shows that the highest permeance was achieved under short filtration-relaxation cycle of 5 min, high aeration rate of 1.5 L/min, and short switching period of 2.5 min, to yield the permeances of 465 ± 18, 447 ± 2, and 369 ± 9 L/(m2h bar), respectively. The high permeances lead to higher operational flux that helps to lower the membrane area as well as energy consumption. Initial estimation of the fully aerated system yields the energy input of 0.152 kWh/m3, much lower than data from the full-scale references of <0.4 kWh/m3. Further energy savings and a lower system footprint can still be achieved by applying the two-sided panel with a switching system, which will be addressed in the future.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links