A Pressurized Liquid Extraction (PLE) method was developed by using conventional High Performance
Liquid Chromatography (HPLC). It was found that all of the PAHs have been successfully extracted with dichloromethane-acetone with high percentage recovery. A high temperature of 180°C gave the highest recovery for fluoranthene (94.4%). Meanwhile, fluorene showed the highest recovery at 150 bar, with 94.6% recovery. It is noted that there is no significant day-to-day difference in the efficiency of the developed method, with the R.S.D. values averaging at 0.02. The optimized conditions applied to the soil samples were analysed using the High Temperature High Performance Liquid Chromatography (HT-HPLC) with chromatographic conditions: Octadecylsilyl-silica (ODSsilica) column (100 mm × 4.6 mm I.D.); mobile phase acetonitrile:water 40:60 (v/v); flow rate 2.5 mL/min; temperature 70°C; UV absorbance 254 nm; injection volume 5µL.
A dynamic supported liquid membrane tip extraction (SLMTE) procedure for the effective extraction and preconcentration of glyphosate (GLYP) and its metabolite aminomethylphosphonic acid (AMPA) in water has been investigated. The SLMTE procedure was performed in a semi-automated dynamic mode and demonstrated a greater performance against a static extraction. Several important extraction parameters such as donor phase pH, cationic carrier concentration, type of membrane solvent, type of acceptor stripping phase, agitation and extraction time were comprehensively optimized. A solution of Aliquat-336, a cationic carrier, in dihexyl ether was selected as the supported liquid incorporated into the membrane phase. Quantification of GLYP and AMPA was carried out using capillary electrophoresis with contactless conductivity detection. An electrolyte solution consisting of 12 mM histidine (His), 8 mM 2-(N-morpholino)ethanesulfonic acid (MES), 75 microM cetyltrimethylammonium bromide (CTAB), 3% methanol, pH 6.3, was used as running buffer. Under the optimum extraction conditions, the method showed good linearity in the range of 0.01-200 microg/L (GLYP) and 0.1-400 microg/L (AMPA), acceptable reproducibility (RSD 5-7%, n=5), low limits of detection of 0.005 microg/L for GLYP and 0.06 microg/L for AMPA, and satisfactory relative recoveries (90-94%). Due to the low cost, the SLMTE device was disposed after each run which additionally eliminated the possibility of carry-over between runs. The validated method was tested for the analysis of both analytes in spiked tap water and river water with good success.
A cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) method with hydroxypropyl-gamma-cyclodextrin (HP-gamma-CD) as chiral selector for the enantiomeric separation of econazole is reported. Enantioseparation of econazole was successfully achieved by the optimized CD-MEKC system containing 40mM HP-gamma-CD, 50mM SDS and 20mM phosphate buffer (pH 8) solution with an analysis time of less than 9min. Calibration curves were linear for the two stereoisomers of econazole (r(2)>0.998). Good repeatabilities in the migration time, peak area and peak height were obtained in terms of RSD% ranging from 0.30 to 7.67%. Combination of solid-phase extraction (SPE) procedure using diol column and the CD-MEKC method was successfully applied to the determination of econazole in a formulated cream sample.
A CD-modified micellar EKC (CD-MEKC) method with 2-hydroxypropyl-gamma-CD (HP-gamma-CD) as chiral selector for the enantioseparation of three chiral triazole fungicides, namely hexaconazole, penconazole, and myclobutanil, is reported for the first time. Simultaneous enantioseparation of the three triazole fungicides was successfully achieved using a CD-MEKC system containing 40 mM HP-gamma-CD and 50 mM SDS in 25 mM phosphate buffer (pH 3.0) solution with resolutions (R(s)) greater than 1.60, peak efficiencies (N) greater than 200,000 for all enantiomers and an analysis time within 15 min compared to 36 min as previously reported using sulfated-beta-CD.
A new sample pre-treatment technique termed cone-shaped membrane liquid phase microextraction (CSM-LPME) was developed and combined with micro-liquid chromatography (micro-LC) for the determination of selected pesticides in water samples. Four pesticides (hexaconazole, procymidone, quinalphos and vinclozolin) were considered as target analytes. Several important extraction parameters such as types of extraction solvent, agitation rate, pH value, total exposure time and effect of salt and humic acids were optimized. Enrichment factors of > 50 folds were easily achieved within 20 min of extraction. The analytical data demonstrated relative standard deviations for the reproducibility of the optimized CSM-LPME method ranging from 6.3 to 7.5%. The correlation coefficients of the calibration curves were at least 0.9995 across a concentration range of 2-100 microg/L. The detection limits for all the analytes were found to be in the range of 1.1-1.9 microg/L.
High temperature liquid chromatography using water-rich and superheated water eluent is evaluated as a new approach for the separation of selected triazole fungicides, hexaconazole, tebuconazole, propiconazole, and difenoconazole. Using a polybutadiene-coated zirconia column at temperatures of 100-150 degrees C, clear separations were achieved when 100% purified water was utilized as organic-free eluent. Excellent limits of detection down to pg level were obtained for the separation of the triazole fungicides under optimum conditions. Van't Hoff plots for the separations were linear suggesting that no changes occurred in the retention mechanism over the temperature range studied.
Linearity assessment as required in method validation has always been subject to different interpretations and definitions by various guidelines and protocols. However, there are very limited applicable implementation procedures that can be followed by a laboratory chemist in assessing linearity. Thus, this work proposes a simple method for linearity assessment in method validation by a regression analysis that covers experimental design, estimation of the parameters, outlier treatment, and evaluation of the assumptions according to the International Union of Pure and Applied Chemistry guidelines. The suitability of this procedure was demonstrated by its application to an in-house validation for the determination of plasticizers in plastic food packaging by GC.
LOD and LOQ are two important performance characteristics in method validation. This work compares three methods based on the International Conference on Harmonization and EURACHEM guidelines, namely, signal-to-noise, blank determination, and linear regression, to estimate the LOD and LOQ for volatile organic compounds (VOCs) by experimental methodology using GC. Five VOCs, toluene, ethylbenzene, isopropylbenzene, n-propylbenzene, and styrene, were chosen for the experimental study. The results indicated that the estimated LODs and LOQs were not equivalent and could vary by a factor of 5 to 6 for the different methods. It is, therefore, essential to have a clearly described procedure for estimating the LOD and LOQ during method validation to allow interlaboratory comparisons.