Displaying all 4 publications

Abstract:
Sort:
  1. Faheem, Kumar BK, Sekhar KVGC, Kunjiappan S, Jamalis J, Balaña-Fouce R, et al.
    Mini Rev Med Chem, 2021;21(4):398-425.
    PMID: 33001013 DOI: 10.2174/1389557520666201001130114
    β-Carboline, a naturally occurring indole alkaloid, holds a momentous spot in the field of medicinal chemistry due to its myriad of pharmacological actions like anticancer, antiviral, antibacterial, antifungal, antileishmanial, antimalarial, neuropharmacological, anti-inflammatory and antithrombotic among others. β-Carbolines exhibit their pharmacological activity via diverse mechanisms. This review provides a recent update (2015-2020) on the anti-infective potential of natural and synthetic β-carboline analogs focusing on its antibacterial, antifungal, antiviral, antimalarial, antileishmanial and antitrypanosomal properties. In cases where enough details are available, a note on its mechanism of action is also added.
  2. Faheem, Kumar BK, Sekhar KVGC, Kunjiappan S, Jamalis J, Balaña-Fouce R, et al.
    Bioorg Chem, 2020 Nov;104:104269.
    PMID: 32947136 DOI: 10.1016/j.bioorg.2020.104269
    COVID-19 caused by the novel SARS-CoV-2 has been declared a pandemic by the WHO is causing havoc across the entire world. As of May end, about 6 million people have been affected, and 367 166 have died from COVID-19. Recent studies suggest that the SARS-CoV-2 genome shares about 80% similarity with the SARS-CoV-1 while their protein RNA dependent RNA polymerase (RdRp) shares 96% sequence similarity. Remdesivir, an RdRp inhibitor, exhibited potent activity against SARS-CoV-2 in vitro. 3-Chymotrypsin like protease (also known as Mpro) and papain-like protease, have emerged as the potential therapeutic targets for drug discovery against coronaviruses owing to their crucial role in viral entry and host-cell invasion. Crystal structures of therapeutically important SARS-CoV-2 target proteins, namely, RdRp, Mpro, endoribonuclease Nsp15/NendoU and receptor binding domain of CoV-2 spike protein has been resolved, which have facilitated the structure-based design and discovery of new inhibitors. Furthermore, studies have indicated that the spike proteins of SARS-CoV-2 use the Angiotensin Converting Enzyme-2 (ACE-2) receptor for its attachment similar to SARS-CoV-1, which is followed by priming of spike protein by Transmembrane protease serine 2 (TMPRSS2) which can be targeted by a proven inhibitor of TMPRSS2, camostat. The current treatment strategy includes repurposing of existing drugs that were found to be effective against other RNA viruses like SARS, MERS, and Ebola. This review presents a critical analysis of druggable targets of SARS CoV-2, new drug discovery, development, and treatment opportunities for COVID-19.
  3. Chander S, Tang CR, Al-Maqtari HM, Jamalis J, Penta A, Hadda TB, et al.
    Bioorg Chem, 2017 06;72:74-79.
    PMID: 28371664 DOI: 10.1016/j.bioorg.2017.03.013
    In the present study, a series of fourteen 5-benzoyl-4-methyl-1,3,4,5-tetrahydro-2H-1,5-benzodiazepin-2-one derivatives were designed, synthesized and characterized by appropriate spectral analysis. Further, titled compounds were in-vitro screened against wild HIV-1 RT enzyme using ELISA based colorimetric assay, in which four compounds significantly inhibited the RT activity with IC50≤25µM. Moreover, two significantly active compounds of the series, A10 and A11 exhibited IC50 values 8.62 and 6.87µM respectively, during the in-vitro assay. Structure Activity Relationship (SAR) studies were performed for the synthesized compounds in order to estimate the effect of substitution pattern on the RT inhibitory potency. The cytotoxicity of the synthesized compounds was evaluated against T lymphocytes. Further, putative binding modes of the significantly active (A11) and the least active (A4) compounds with wild HIV-1 RT were also investigated using docking studies.
  4. Jamalis J, Yusof FSM, Chander S, Wahab RA, P Bhagwat D, Sankaranarayanan M, et al.
    PMID: 31241020 DOI: 10.2174/1871523018666190625170802
    Psoralen or furocoumarin is a linear three ring heterocyclic compound. Psoralens are planar, tricyclic compounds, consisting of a furan ring fused to a coumarin moiety. Psoralen has been known for a wide spectrum of biological activities, spanning from cytotoxic, photosensitizing, insecticidal, antibacterial to antifungal effect. Thus, several structural changes were introduced to explore the role of specific positions with respect to the biological activity. Convenient approaches utilized for the synthesis of psoralen skeleton can be categorized into two parts: (i) the preparation of the tricyclic ring system from resorcinol, (ii) the exocyclic modification of the intact ring system. Furthermore, although psoralens have been used in diverse ways, we mainly focus in this work on their clinical utility for the treatment of psioraisis, vitiligo and skin-related disorder.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links