Green procedure for synthesizing silver nanoparticles (AgNPs) is currently considered due to its economy and toxic-free effects. Several existing works on synthesizing AgNPs using leaves extract still involve the use of physical or mechanical treatment such as heating or stirring, which consume a lot of energy. To extend and explore the green extraction philosophy, we report here the synthesis and antibacterial evaluations of a purely green procedure to synthesize AgNPs using Carica papaya, Manihot esculenta, and Morinda citrifolia leaves extract without the aforementioned additional treatment. The produced AgNPs were characterized using the ultraviolet-visible spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and antibacterial investigations. For antibacterial tests, two bacteria namely Escherichia coli and Bacillus cereus were selected. The presently employed method has successfully produced spherical AgNPs having sizes ranging from 9 to 69 nm, with plasmonic characteristics ranging from 356 to 485 nm, and energy-dispersive X-ray peak at approximately 3 keV. In addition, the smallest particles can be produced when Manihot esculenta leaves extract was applied. Moreover, this study also confirmed that both the leaves and synthesized AgNPs exhibit the antibacterial capability, depending on their concentration and the bacteria type.
Indonesia is the second-largest contributor of microplastics (MPs) pollution in the marine ecosystem. Most MPs pollution-related studies in Indonesia focus on seawater, sediment, with less information found on the commercially important fish species used for human consumption. Skipjack Tuna (Euthynnus affinis) is one of the major exporting fishery commodities from Indonesia. This exploratory study aimed to determine MPs presence in the digestive tract of Skipjack Tuna from the Southern Coast of Java, Indonesia. The fish samples were collected from five different fish traditional auction market along the Southern Coast of Java, Indonesia, namely Pangandaran, Pamayang Sari, Ciletuh, Santolo, and Palabuhan Ratu. The gastrointestinal tract of Skipjack tuna was pretreated using alkaline destruction and filtered. The presence of MPs in the treated samples was visually identified using an optical microscope, while Polybrominated diphenyl ethers (PBDEs) contaminants were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). A total of 19 suspected MPs particles were found in the form of filament (84%), angular (11%), and round (5%). This result would provide a better indication of the MPs contamination in marine life species in the Southern Coast of Java, Indonesia, as useful information for marine environmental monitoring program in the future.