Displaying all 6 publications

Abstract:
Sort:
  1. Sagir, Abdu Masanawa, Sathasivam, Saratha
    MATEMATIKA, 2017;33(1):1-10.
    MyJurnal
    In the recent economic crises, one of the precise uniqueness that all stock
    markets have in common is the uncertainty. An attempt was made to forecast future
    index of the Malaysia Stock Exchange Market using artificial neural network (ANN)
    model and a traditional forecasting tool – Multiple Linear Regressions (MLR). This
    paper starts with a brief introduction of stock exchange of Malaysia, an overview of
    artificial neural network and machine learning models used for prediction. System
    design and data normalization using MINITAB software were described. Training
    algorithm, MLR Model and network parameter models were presented. Best training
    graphs showing the training, validation, test and all regression values were analyzed.
  2. Mamuda M, Sathasivam S
    MATEMATIKA, 2017;33(1):11-19.
    MyJurnal
    Medical diagnosis is the extrapolation of the future course and outcome of a disease and a sign of the likelihood of recovery from that disease. Diagnosis is important because it is used to guide the type and intensity of the medication to be administered to patients. A hybrid intelligent system that combines the fuzzy logic qualitative approach and Adaptive Neural Networks (ANNs) with the capabilities of getting a better performance is required. In this paper, a method for modeling the survival of diabetes patient by utilizing the application of the Adaptive NeuroFuzzy Inference System (ANFIS) is introduced with the aim of turning data into knowledge that can be understood by people. The ANFIS approach implements the hybrid learning algorithm that combines the gradient descent algorithm and a recursive least square error algorithm to update the antecedent and consequent parameters. The combination of fuzzy inference that will represent knowledge in an interpretable manner and the learning ability of neural network that can adjust the membership functions of the parameters and linguistic rules from data will be considered. The proposed framework can be applied to estimate the risk and survival curve between different diagnostic factors and survival time with the explanation capabilities.
  3. Liew, Ching Kho, Mohd Shareduwan Mohd Kasihmuddin, Mohd. Asyraf Mansor, Sathasivam, Saratha
    MyJurnal
    Since its debut in 2009, League of Legends (LoL) has been on a rise in becoming an extremely favoured multiplayer online battle arena (MOBA) game. This paper presented a logic mining technique to model the results (Win / Lose) of the LoL games played in 3 regions, namely South Korea, North America and Europe. In this research, a method named k satisfiability based reverse analysis method (kSATRA) was brought forward to obtain the logical relationship among the gameplays and objectives in the game. The logical rule obtained from the LoL games was used to categorize the results of future games. kSATRA made use of the advantages of Hopfield Neural Network and k Satisfiability representation. The data set used in this study included the data of all 10 teams from each region, which composed of all games from Spring Season 2018. The effectiveness of kSATRA in obtaining logical rule in LoL games was tested based on root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and CPU time. Results acquired from the computer simulation showed the robustness of kSATRA in exhibiting the performance of the LoL teams.
  4. Sathasivam, Saratha, Mustafa Mamat, Mohd Shareduwan Mohd Kasihmuddin, Mohd. Asyraf Mansor
    MyJurnal
    Clonal selection algorithm and discrete Hopfield neural network are extensively employed for solving higher-order optimization problems ranging from the constraint satisfaction problem to complex pattern recognition. The modified clonal selection algorithm is a comprehensive and less iterative immune-inspired searching algorithm, utilized to search for the correct combination of instances for Very large-scale integrated (VLSI) circuit structure. In this research, the VLSI circuit framework consists of Boolean 3-Satisfiability instances with the different complexities and number of transistors are considered. Hence, a hybrid modified clonal selection algorithm with discrete Hopfield neural network is well developed to optimize the configuration of VLSI circuits with different number of electronic components such as transistors as the instances. Therefore, the performance of the developed hybrid model was assessed experimentally with the standard models, HNNVLSI-3SATES and HNNVLSI-3SATGA in term of circuit accuracy, sensitivity, robustness and runtime to complete the verification process. The results have demonstrated the developed model, HNNVLSI-3SATCSA produced a minimum error (consistently approaching 0), better accuracy (more than 80%) and faster computational time (less than 125 seconds) against changes in the complexity in term of the number of transistors. Furthermore, the developed hybrid model is able to minimize the computational burden and configurational noises for the variant of VLSI circuits.
  5. Sathasivam, Saratha, Mustafa Mamat, Mohd Shareduwan Mohd Kasihmuddin, Mohd. Asyraf Mansor
    MyJurnal
    Maximum k Satisfiability logical rule (MAX-kSAT) is a language that bridges real life application to neural network optimization. MAX-kSAT is an interesting paradigm because the outcome of this logical rule is always negative/false. Hopfield Neural Network (HNN) is a type of neural network that finds the solution based on energy minimization. Interesting intelligent behavior has been observed when the logical rule is embedded in HNN. Increasing the storage capacity during the learning phase of HNN has been a challenging problem for most neural network researchers. Development of Metaheuristics algorithms has been crucial in optimizing the learning phase of Neural Network. The most celebrated metaheuristics model is Genetic Algorithm (GA). GA consists of several important operators that emphasize on solution improvement. Although GA has been reported to optimize logic programming in HNN, the learning complexity increases as the number of clauses increases. GA is more likely to be trapped in suboptimal fitness as the number of clauses increases. In this paper, metaheuristic algorithm namely Artificial Bee Colony (ABC) were proposed in learning MAX-kSAT programming. ABC is swarm-based metaheuristics that capitalized the capability of Employed Bee, Onlooker Bee, and Scout Bee. To this end, all the learning models were tested in a new restricted learning environment. Experimental results obtained from the computer simulation demonstrate the effectiveness of ABC in modelling MAX-kSAT.
  6. Hamadneh N, Khan WA, Sathasivam S, Ong HC
    PLoS One, 2013;8(5):e66080.
    PMID: 23741525 DOI: 10.1371/journal.pone.0066080
    Particle swarm optimization (PSO) is employed to investigate the overall performance of a pin fin.The following study will examine the effect of governing parameters on overall thermal/fluid performance associated with different fin geometries, including, rectangular plate fins as well as square, circular, and elliptical pin fins. The idea of entropy generation minimization, EGM is employed to combine the effects of thermal resistance and pressure drop within the heat sink. A general dimensionless expression for the entropy generation rate is obtained by considering a control volume around the pin fin including base plate and applying the conservations equations for mass and energy with the entropy balance. Selected fin geometries are examined for the heat transfer, fluid friction, and the minimum entropy generation rate corresponding to different parameters including axis ratio, aspect ratio, and Reynolds number. The results clearly indicate that the preferred fin profile is very dependent on these parameters.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links