Displaying all 5 publications

Abstract:
Sort:
  1. Manawar RB, Mamtora MJ, Shah MK, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2020 Jan 01;76(Pt 1):53-61.
    PMID: 31921452 DOI: 10.1107/S2056989019016529
    The title homoleptic Schiff base complexes, [M(C14H9Cl2N2O)2], for M = CoII, (I), and CuII, (II), present distinct coordination geometries despite the Schiff base dianion coordinating via the phenolato-O and imine-N atoms in each case. For (I), the coordination geometry is based on a trigonal bipyramid whereas for (II), a square-planar geometry is found (Cu site symmetry ). In the crystal of (I), discernible supra-molecular layers in the ac plane are sustained by chloro-benzene-C-H⋯O(coordinated), chloro-benzene-C-H⋯π(fused-benzene ring) as well as π(fused-benzene, chloro-benzene)-π(chloro-benzene) inter-actions [inter-centroid separations = 3.6460 (17) and 3.6580 (16) Å, respectively]. The layers inter-digitate along the b-axis direction and are linked by di-chloro-benzene-C-H⋯π(fused-benzene ring) and π-π inter-actions between fused-benzene rings and between chloro-benzene rings [inter-centroid separations = 3.6916 (16) and 3.7968 (19) Å, respectively] . Flat, supra-molecular layers are also found in the crystal of (II), being stabilized by π-π inter-actions formed between fused-benzene rings and between chloro-benzene rings [inter-centroid separations = 3.8889 (15) and 3.8889 (15) Å, respectively]; these stack parallel to [10] without directional inter-actions between them. The analysis of the respective calculated Hirshfeld surfaces indicate diminished roles for H⋯H contacts [26.2% (I) and 30.5% (II)] owing to significant contributions by Cl⋯H/H⋯Cl contacts [25.8% (I) and 24.9% (II)]. Minor contributions by Cl⋯Cl [2.2%] and Cu⋯Cl [1.9%] contacts are indicated in the crystals of (I) and (II), respectively. The inter-action energies largely arise from dispersion terms; the aforementioned Cu⋯Cl contact in (II) gives rise to the most stabilizing inter-action in the crystal of (II).
  2. Manawar RB, Gondaliya MB, Shah MK, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2019 Oct 01;75(Pt 10):1423-1428.
    PMID: 31636969 DOI: 10.1107/S2056989019012349
    The title Schiff base compound, C14H10Cl2N2O, features an E configuration about each of the C=N imine bonds. Overall, the mol-ecule is approximately planar with the dihedral angle between the central C2N2 residue (r.m.s. deviation = 0.0371 Å) and the peripheral hy-droxy-benzene and chloro-benzene rings being 4.9 (3) and 7.5 (3)°, respectively. Nevertheless, a small twist is evident about the central N-N bond [the C-N-N-C torsion angle = -172.7 (2)°]. An intra-molecular hy-droxy-O-H⋯N(imine) hydrogen bond closes an S(6) loop. In the crystal, π-π stacking inter-actions between hy-droxy- and chloro-benzene rings [inter-centroid separation = 3.6939 (13) Å] lead to a helical supra-molecular chain propagating along the b-axis direction; the chains pack without directional inter-actions between them. The calculated Hirshfeld surfaces point to the importance of H⋯H and Cl⋯H/H⋯Cl contacts to the overall surface, each contributing approximately 29% of all contacts. However, of these only Cl⋯H contacts occur at separations less than the sum of the van der Waals radii. The aforementioned π-π stacking inter-actions contribute 12.0% to the overall surface contacts. The calculation of the inter-action energies in the crystal indicates significant contributions from the dispersion term.
  3. Manawar RB, Pashavan CT, Shah MK, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2020 Jun 01;76(Pt 6):862-869.
    PMID: 32523754 DOI: 10.1107/S2056989020006416
    Each of the title dis-symmetric di-Schiff base compounds, C15H12Cl2N2O2 (I) and C14H9BrCl2N2O (II), features a central azo-N-N bond connecting two imine groups, each with an E-configuration. One imine bond in each mol-ecule connects to a 2,6-di-chloro-benzene substituent while the other links a 2-hydroxyl-3-meth-oxy-substituted benzene ring in (I) or a 2-hydroxyl-4-bromo benzene ring in (II). Each mol-ecule features an intra-molecular hydroxyl-O-H⋯N(imine) hydrogen bond. The C-N-N-C torsion angles of -151.0 (3)° for (I) and 177.8 (6)° (II) indicates a significant twist in the former. The common feature of the mol-ecular packing is the formation of supra-molecular chains. In (I), the linear chains are aligned along the a-axis direction and the mol-ecules are linked by meth-oxy-C-H⋯O(meth-oxy) and chloro-benzene-C-Cl⋯π(chlorobenzene) inter-actions. The chain in (II) is also aligned along the a axis but, has a zigzag topology and is sustained by Br⋯O [3.132 (4) Å] secondary bonding inter-actions. In each crystal, the chains pack without directional inter-actions between them. The non-covalent inter-actions are delineated in the study of the calculated Hirshfeld surfaces. Dispersion forces make the most significant contributions to the identified inter-molecular inter-actions in each of (I) and (II).
  4. Isleem HF, Abid M, Alaloul WS, Shah MK, Zeb S, Musarat MA, et al.
    Materials (Basel), 2021 Jun 23;14(13).
    PMID: 34201659 DOI: 10.3390/ma14133498
    The majority of experimental and analytical studies on fiber-reinforced polymer (FRP) confined concrete has largely concentrated on plain (unreinforced) small-scale concrete columns, on which the efficiency of strengthening is much higher compared with large-scale columns. Although reinforced concrete (RC) columns subjected to combined axial compression and flexural loads (i.e., eccentric compression) are the most common structural elements used in practice, research on eccentrically-loaded FRP-confined rectangular RC columns has been much more limited. More specifically, the limited research has generally been concerned with small-scale RC columns, and hence, the proposed eccentric-loading stress-strain models were mainly based on the existing concentric-loading models of FRP-confined concrete columns of small scale. In the light of such demand to date, this paper is aimed at developing a mathematical model to better predict the strength of FRP-confined rectangular RC columns. The strain distribution of FRP around the circumference of the rectangular sections was investigated to propose equations for the actual rupture strain of FRP wrapped in the horizontal and vertical directions. The model was accomplished using 230 results of 155 tested specimens compiled from 19 studies available in the technical literature. The test database covers an unconfined concrete strength ranging between 9.9 and 73.1 MPa, and section's dimension ranging from 100-300 mm and 125-435 mm for the short and long sides, respectively. Other test parameters, such as aspect ratio, corner radius, internal hoop steel reinforcement, FRP wrapping layout, and number of FRP wraps were all considered in the model. The performance of the model shows a very good correlation with the test results.
  5. Farokhi Nejad A, Bin Salim MY, Rahimian Koloor SS, Petrik S, Yahya MY, Abu Hassan S, et al.
    Polymers (Basel), 2021 Oct 02;13(19).
    PMID: 34641214 DOI: 10.3390/polym13193400
    As a high-demand material, polymer matrix composites are being used in many advanced industrial applications. Due to ecological issues in the past decade, some attention has been paid to the use of natural fibers. However, using only natural fibers is not desirable for advanced applications. Therefore, hybridization of natural and synthetic fibers appears to be a good solution for the next generation of polymeric composite structures. Composite structures are normally made for various harsh operational conditions, and studies on loading rate and strain-dependency are essential in the design stage of the structures. This review aimed to highlight the different materials' content of hybrid composites in the literature, while addressing the different methods of material characterization for various ranges of strain rates. In addition, this work covers the testing methods, possible failure, and damage mechanisms of hybrid and synthetic FRP composites. Some studies about different numerical models and analytical methods that are applicable for composite structures under different strain rates are described.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links