Affiliations 

  • 1 Chemical Research Laboratory, Department of Chemistry Saurashtra University, Rajkot - 360005, Gujarat, India
  • 2 Department of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India
  • 3 Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
Acta Crystallogr E Crystallogr Commun, 2020 Jun 01;76(Pt 6):862-869.
PMID: 32523754 DOI: 10.1107/S2056989020006416

Abstract

Each of the title dis-symmetric di-Schiff base compounds, C15H12Cl2N2O2 (I) and C14H9BrCl2N2O (II), features a central azo-N-N bond connecting two imine groups, each with an E-configuration. One imine bond in each mol-ecule connects to a 2,6-di-chloro-benzene substituent while the other links a 2-hydroxyl-3-meth-oxy-substituted benzene ring in (I) or a 2-hydroxyl-4-bromo benzene ring in (II). Each mol-ecule features an intra-molecular hydroxyl-O-H⋯N(imine) hydrogen bond. The C-N-N-C torsion angles of -151.0 (3)° for (I) and 177.8 (6)° (II) indicates a significant twist in the former. The common feature of the mol-ecular packing is the formation of supra-molecular chains. In (I), the linear chains are aligned along the a-axis direction and the mol-ecules are linked by meth-oxy-C-H⋯O(meth-oxy) and chloro-benzene-C-Cl⋯π(chlorobenzene) inter-actions. The chain in (II) is also aligned along the a axis but, has a zigzag topology and is sustained by Br⋯O [3.132 (4) Å] secondary bonding inter-actions. In each crystal, the chains pack without directional inter-actions between them. The non-covalent inter-actions are delineated in the study of the calculated Hirshfeld surfaces. Dispersion forces make the most significant contributions to the identified inter-molecular inter-actions in each of (I) and (II).

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Similar publications