Displaying all 3 publications

Abstract:
Sort:
  1. Sharifah Nur Munirah Syed Hasan, Faradiella Mohd Kusin, Shamshuddin Jusop, Ferdius Mohamat Yusuff
    MyJurnal
    Waste rocks are a non-economical by-product of mining operations, which can lock up carbon dioxide into a carbonate form and thereby help reduce greenhouse gases emissions. The aims of this research are to determine the mineral and chemical composition of the sedimentary waste rocks of gold mines and to classify the potential of silicate minerals to be a feedstock for carbonation mineralization. The sampling was undertaken at the Selinsing gold mine, where waste rocks were collected from the waste dump, stockpiles, the borrow pit, and the main pit. The mineralogical and chemical component of the sedimentary waste rocks were explored using X-ray diffraction and energy dispersive X-ray spectroscopy. The findings indicated that the presence of divalent cations, of 55.12% for CaO, 9.09% for MgO, and 16.24% for Fe2O3 from gold mine waste, capable of sequestering carbon dioxide into calcium, magnesium and iron carbonates, respectively, through carbonation of mineral. The domination of silicate minerals such as quartz, muscovite, kaolinite, chlorite, albite, and carbonate minerals such as calcite, have been found to be widespread in sedimentary waste rocks. However, the natural silicates (chlorite, muscovite) and carbonates (calcite) are potential minerals which can be consumed as feedstock for carbonation processes because they contain the magnesium, iron, and calcium elements which can form stable carbonates in the presence of carbon dioxide. The mineralogy and chemical composition of sedimentary waste rocks from the Selinsing gold mine provides a better understanding of the future carbonation reaction to sequester more carbon dioxide in response to climate change.
  2. Panhwar QA, Naher UA, Shamshuddin J, Jusop S, Othman R, Latif MA, et al.
    PLoS One, 2014;9(10):e97241.
    PMID: 25285745 DOI: 10.1371/journal.pone.0097241
    A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia). The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmol(c) kg(-1), respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB) including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis). The isolated strains were capable of producing indoleacetic acid (IAA) and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65%) existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM) was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils.
  3. Panhwar QA, Naher UA, Radziah O, Shamshuddin J, Razi IM
    Molecules, 2015 Feb 20;20(3):3628-46.
    PMID: 25710843 DOI: 10.3390/molecules20033628
    Aluminum toxicity is widely considered as the most important limiting factor for plants growing in acid sulfate soils. A study was conducted in laboratory and in field to ameliorate Al toxicity using plant growth promoting bacteria (PGPB), ground magnesium limestone (GML) and ground basalt. Five-day-old rice seedlings were inoculated by Bacillus sp., Stenotrophomonas maltophila, Burkholderia thailandensis and Burkholderia seminalis and grown for 21 days in Hoagland solution (pH 4.0) at various Al concentrations (0, 50 and 100 μM). Toxicity symptoms in root and leaf were studied using scanning electron microscope. In the field, biofertilizer (PGPB), GML and basalt were applied (4 t·ha-1 each). Results showed that Al severely affected the growth of rice. At high concentrations, the root surface was ruptured, leading to cell collapse; however, no damages were observed in the PGPB inoculated seedlings. After 21 days of inoculation, solution pH increased to >6.0, while the control treatment remained same. Field study showed that the highest rice growth and yield were obtained in the bio-fertilizer and GML treatments. This study showed that Al toxicity was reduced by PGPB via production of organic acids that were able to chelate the Al and the production of polysaccharides that increased solution pH. The release of phytohormones further enhanced rice growth that resulted in yield increase.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links