Displaying all 7 publications

Abstract:
Sort:
  1. Awang AF, Ferdosh S, Sarker MZ, Sheikh HI, Ghafoor K, Yunus K
    Curr Pharm Biotechnol, 2016 9 23;17(12):1024-1035.
    PMID: 27655363
    Stereospermum fimbriatum is one of the medicinal plants that has been claimed to be used traditionally to treat several illnesses such as stomachache, earache, skin irritation and postpartum illness. The genus of this plant is known to possess medicinal properties in every part of the plant. Therapeutic potential of S. fimbriatum is anticipated based on numerous previous studies that documented variety of phytochemical contents and bioactivity of the genus. The most reported bioactivities of its genus are antimicrobial, antioxidant, anti-diabetic, anti-inflammatory, anti-diarrheal and analgesic activities. S. fimbriatum is a rare species that has not been discovered yet. Thus, this review aims at highlighting the potentials of S. fimbriatum by collecting available data on the bioactivities of its genus and set the directions for future research on this plant.
  2. Laith AA, Ros-Amira MK, Sheikh HI, Effendy AWM, Najiah M
    Fish Shellfish Immunol, 2021 Nov;118:169-179.
    PMID: 34487829 DOI: 10.1016/j.fsi.2021.08.032
    Understanding of pathogenicity and immunity is crucial in producing disease-resistant cultured mollusk varieties. This study aimed to isolate pathogenic Vibrio alginolyticus from naturally infected Perna viridis, and to determine histopathological and immunological changes after challenge test with the same bacteria. Biochemical tests and 16S rDNA identified the pathogen as V. alginolyticus (99%). Antibiotic susceptibility test showed ampicillin resistance of the pathogen. Pathogenicity assay was conducted by immersing P. viridis in 1.5 × 106 CFU mL-1V. alginolyticus for 60 min and observed for 5 days. Clinical signs, histopathological and immunological alterations were observed and monitored. Infected groups showed 60% mortality and decreased immunity factors, including total hemocyte count and lysozymes activity. Histopathological examination revealed pathological lesions in the hepatopancreas at 24 h post-challenge and hemocyte proliferation as part of a severe inflammatory reaction. Karyomegaly in the hepatopancreas tissue, concomitant with necrosis demolition of tubules cells, was also observed. V. alginolyticus was determined to be pathogenic to P. viridis, causing mortality as a result of multiple organ lesions and dysfunction in digestive gland and immune organs. This study demonstrated the role of histopathological and immunological parameters as potential biomarkers in assessing vibriosis caused by Vibrio species in green mussel, P. viridis.
  3. Sheikh HI, Zakaria NH, Abdul Majid FA, Zamzuri F, Fadhlina A, Hairani MAS
    J Agric Food Res, 2023 Dec;14:100680.
    PMID: 37346755 DOI: 10.1016/j.jafr.2023.100680
    Zingiber officinale, Curcuma longa, and Momordica charantia are medicinal plants that are commonly used in the form of herbal tea, which is formulated to strengthen the immune system, especially against COVID-19 infection. Excellent antioxidant, anti-inflammatory, and immunostimulatory properties have been reported for their bioactive compounds, which have been shown to aid in stimulating immune systems as well as lowering the risk of severe COVID-19 such as lung injury. Yet, no bibliometric study on the subject is available. Hence, the purpose of this study is to quantitatively examine the existing articles related to the therapeutic potential of these three herbs, as well as their mechanisms of action in combating the SARS-CoV-2 virus. A total of 121 papers were retrieved from Scopus database up to 14th March 2023. The bibliometric analysis was conducted using VOSviewer software. Based on the literature search, Z. officinale was the most researched plant. India appeared as the most prolific country, with the highest number of articles contributed by two authors from India (Rathi, R. and Gayatri Devi, R.). In terms of keywords, the plants were associated with immune modulation, management of symptoms, antioxidant, anti-inflammatory and antiviral activities. Several important bioactive compounds were responsible for these effects such as gingerol, paradol, shogaol, curcumin, calebin A, momordicoside, karaviloside and cucurbitadienol. These compounds were hypothesized to prevent and cure COVID-19 by regulating inflammatory response, downregulating oxidative stress and modulating immunostimulatory activity. This review paper therefore supports the potential of Z. officinale, C. longa, and M. charantia to be formulated as a herbal blend for treating and preventing COVID-19 infection.
  4. Hazra SK, Sarkar T, Salauddin M, Sheikh HI, Pati S, Chakraborty R
    Heliyon, 2020 Oct;6(10):e05382.
    PMID: 33163665 DOI: 10.1016/j.heliyon.2020.e05382
    Aegle marmelos (L.) is a seasonal fruit that contains significant amounts of bioactives like, phenolic acids (gallic acids, 2,3-dihydroxy benzoic acid, chlorogenic acid, p-coumaric acid, vanillic acid), flavonoid (rutin), organic acids (oxalic acid, tartaric acid, malic acid, lactic acid, acetic acid, citric acid, propionic acid, succinic acid, fumaric acid), vitamin C, vitamin B group (thiamine, niacin, pyridoxine, pantothenic acid, biotin, cobalamins, riboflavin), tocopherols (α-tocopherol, β-tocopherol, γ-tocopherol, δ-tocopherol), carotenes (α-carotene, β-carotene, γ-carotene, δ-carotene) and also rich in essential minerals (potassium, calcium, phosphorus, sodium, iron, copper, manganese). This study provides a comprehensive composition analysis (determined using RP-HPLC and Energy Dispersive X-Ray Fluorescence (EDXRF) Spectroscopy). In vitro medicinal activities (antioxidant activity, anti-inflammatory activity, anti-diabetic activity) are quantified for different bael samples. The study also investigates the changes of these bioactive components with freeze, sun, hot air, and microwave drying. The study gives a proper vision to preserve the nutraceutically rich pulp by converting it into fruit leather.
  5. Lahiri D, Nag M, Sheikh HI, Sarkar T, Edinur HA, Pati S, et al.
    Front Microbiol, 2021;12:636588.
    PMID: 33717030 DOI: 10.3389/fmicb.2021.636588
    The emergence of bacterial resistance to antibiotics has led to the search for alternate antimicrobial treatment strategies. Engineered nanoparticles (NPs) for efficient penetration into a living system have become more common in the world of health and hygiene. The use of microbial enzymes/proteins as a potential reducing agent for synthesizing NPs has increased rapidly in comparison to physical and chemical methods. It is a fast, environmentally safe, and cost-effective approach. Among the biogenic sources, fungi and bacteria are preferred not only for their ability to produce a higher titer of reductase enzyme to convert the ionic forms into their nano forms, but also for their convenience in cultivating and regulating the size and morphology of the synthesized NPs, which can effectively reduce the cost for large-scale manufacturing. Effective penetration through exopolysaccharides of a biofilm matrix enables the NPs to inhibit the bacterial growth. Biofilm is the consortia of sessile groups of microbial cells that are able to adhere to biotic and abiotic surfaces with the help extracellular polymeric substances and glycocalyx. These biofilms cause various chronic diseases and lead to biofouling on medical devices and implants. The NPs penetrate the biofilm and affect the quorum-sensing gene cascades and thereby hamper the cell-to-cell communication mechanism, which inhibits biofilm synthesis. This review focuses on the microbial nano-techniques that were used to produce various metallic and non-metallic nanoparticles and their "signal jamming effects" to inhibit biofilm formation. Detailed analysis and discussion is given to their interactions with various types of signal molecules and the genes responsible for the development of biofilm.
  6. Lahiri D, Nag M, Banerjee R, Mukherjee D, Garai S, Sarkar T, et al.
    PMID: 33987107 DOI: 10.3389/fcimb.2021.660048
    Biofilm is a syntrophic association of sessile groups of microbial cells that adhere to biotic and abiotic surfaces with the help of pili and extracellular polymeric substances (EPS). EPSs also prevent penetration of antimicrobials/antibiotics into the sessile groups of cells. Hence, methods and agents to avoid or remove biofilms are urgently needed. Enzymes play important roles in the removal of biofilm in natural environments and may be promising agents for this purpose. As the major component of the EPS is polysaccharide, amylase has inhibited EPS by preventing the adherence of the microbial cells, thus making amylase a suitable antimicrobial agent. On the other hand, salivary amylase binds to amylase-binding protein of plaque-forming Streptococci and initiates the formation of biofilm. This review investigates the contradictory actions and microbe-associated genes of amylases, with emphasis on their structural and functional characteristics.
  7. Bharadwaj KK, Sarkar T, Ghosh A, Baishya D, Rabha B, Panda MK, et al.
    Appl Biochem Biotechnol, 2021 Oct;193(10):3371-3394.
    PMID: 34212286 DOI: 10.1007/s12010-021-03608-7
    COVID-19 is a disease that puts most of the world on lockdown and the search for therapeutic drugs is still ongoing. Therefore, this study used in silico screening to identify natural bioactive compounds from fruits, herbaceous plants, and marine invertebrates that are able to inhibit protease activity in SARS-CoV-2 (PDB: 6LU7). We have used extensive screening strategies such as drug likeliness, antiviral activity value prediction, molecular docking, ADME, molecular dynamics (MD) simulation, and MM/GBSA. A total of 17 compounds were shortlisted using Lipinski's rule in which 5 compounds showed significant predicted antiviral activity values. Among these 5, only 2 compounds, Macrolactin A and Stachyflin, showed good binding energy of -9.22 and -8.00 kcal/mol, respectively, within the binding pocket of the Mpro catalytic residues (HIS 41 and CYS 145). These two compounds were further analyzed to determine their ADME properties. The ADME evaluation of these 2 compounds suggested that they could be effective in developing therapeutic drugs to be used in clinical trials. MD simulations showed that protein-ligand complexes of Macrolactin A and Stachyflin with the target receptor (6LU7) were stable for 100 nanoseconds. The MM/GBSA calculations of Mpro-Macrolactin A complex indicated higher binding free energy (-42.58 ± 6.35 kcal/mol). Dynamic cross-correlation matrix (DCCM) and principal component analysis (PCA) on the residual movement in the MD trajectories further confirmed the stability of Macrolactin A bound state with 6LU7. In conclusion, this study showed that marine natural compound Macrolactin A could be an effective therapeutic inhibitor against SARS-CoV-2 protease (6LU7). Additional in vitro and in vivo validations are strongly needed to determine the efficacy and therapeutic dose of Macrolactin A in biological systems.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links