Comparing the functional gene composition of soils at opposite extremes of environmental gradients may allow testing of hypotheses about community and ecosystem function. Here, we were interested in comparing how tropical microbial ecosystems differ from those of polar climates. We sampled several sites in the equatorial rainforest of Malaysia and Brunei, and the high Arctic of Svalbard, Canada, and Greenland, comparing the composition and the functional attributes of soil biota between the two extremes of latitude, using shotgun metagenomic Illumina HiSeq2000 sequencing. Based upon "classical" views of how tropical and higher latitude ecosystems differ, we made a series of predictions as to how various gene function categories would differ in relative abundance between tropical and polar environments. Results showed that in some respects our predictions were correct: the polar samples had higher relative abundance of dormancy related genes, and lower relative abundance of genes associated with respiration, and with metabolism of aromatic compounds. The network complexity of the Arctic was also lower than the tropics. However, in various other respects, the pattern was not as predicted; there were no differences in relative abundance of stress response genes or in genes associated with secondary metabolism. Conversely, CRISPR genes, phage-related genes, and virulence disease and defense genes, were unexpectedly more abundant in the Arctic, suggesting more intense biotic interaction. Also, eukaryote diversity and bacterial diversity were higher in the Arctic of Svalbard compared to tropical Brunei, which is consistent with what may expected from amplicon studies in terms of the higher pH of the Svalbard soil. Our results in some respects confirm expectations of how tropical versus polar nature may differ, and in other respects challenge them.
The extent of Dipterocarp rainforests on the emergent Sundaland landmass in Southeast Asia during Quaternary glaciations remains a key question. A better understanding of the biogeographic history of Sundaland could help explain current patterns of biodiversity and support the development of effective forest conservation strategies. Dipterocarpaceae trees dominate the rainforests of Sundaland, and their distributions serve as a proxy for rainforest extent. We used species distribution models (SDMs) of 317 Dipterocarp species to estimate the geographic extent of appropriate climatic conditions for rainforest on Sundaland at the last glacial maximum (LGM). The SDMs suggest that the climate of central Sundaland at the LGM was suitable to sustain Dipterocarp rainforest, and that the presence of a previously suggested transequatorial savannah corridor at that time is unlikely. Our findings are supported by palynologic evidence, dynamic vegetation models, extant mammal and termite communities, vascular plant fatty acid stable isotopic compositions, and stable carbon isotopic compositions of cave guano profiles. Although Dipterocarp species richness was generally lower at the LGM, areas of high species richness were mostly found off the current islands and on the emergent Sunda Shelf, indicating substantial species migration and mixing during the transitions between the Quaternary glacial maxima and warm periods such as the present.
The marked biogeographic difference between western (Malay Peninsula and Sumatra) and eastern (Borneo) Sundaland is surprising given the long time that these areas have formed a single landmass. A dispersal barrier in the form of a dry savanna corridor during glacial maxima has been proposed to explain this disparity. However, the short duration of these dry savanna conditions make it an unlikely sole cause for the biogeographic pattern. An additional explanation might be related to the coarse sandy soils of central Sundaland. To test these two nonexclusive hypotheses, we performed a floristic cluster analysis based on 111 tree inventories from Peninsular Malaysia, Sumatra, and Borneo. We then identified the indicator genera for clusters that crossed the central Sundaland biogeographic boundary and those that did not cross and tested whether drought and coarse-soil tolerance of the indicator genera differed between them. We found 11 terminal floristic clusters, 10 occurring in Borneo, 5 in Sumatra, and 3 in Peninsular Malaysia. Indicator taxa of clusters that occurred across Sundaland had significantly higher coarse-soil tolerance than did those from clusters that occurred east or west of central Sundaland. For drought tolerance, no such pattern was detected. These results strongly suggest that exposed sandy sea-bed soils acted as a dispersal barrier in central Sundaland. However, we could not confirm the presence of a savanna corridor. This finding makes it clear that proposed biogeographic explanations for plant and animal distributions within Sundaland, including possible migration routes for early humans, need to be reevaluated.
The original version of this Article contained an error in the third sentence of the abstract and incorrectly read "Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha-1 year-1 (95% CI 0.14-0.72, mean period 1988-2010) above-ground live biomass", rather than the correct "Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha-1 year-1 (95% CI 0.14-0.72, mean period 1988-2010) in above-ground live biomass carbon". This has now been corrected in both the PDF and HTML versions of the Article.
Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed using standardised methods, allowing a multi-scale evaluation of diversity-carbon relationships in tropical forests. Diversity-carbon relationships among all plots at 1 ha scale across the tropics are absent, and within continents are either weak (Asia) or absent (Amazonia, Africa). A weak positive relationship is detectable within 1 ha plots, indicating that diversity effects in tropical forests may be scale dependent. The absence of clear diversity-carbon relationships at scales relevant to conservation planning means that carbon-centred conservation strategies will inevitably miss many high diversity ecosystems. As tropical forests can have any combination of tree diversity and carbon stocks both require explicit consideration when optimising policies to manage tropical carbon and biodiversity.
The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼ 40,000 and ∼ 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼ 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼ 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.