Displaying all 4 publications

Abstract:
Sort:
  1. Promsuwan K, Soleh A, Saisahas K, Saichanapan J, Kanatharana P, Thavarungkul P, et al.
    J Colloid Interface Sci, 2021 Sep;597:314-324.
    PMID: 33872888 DOI: 10.1016/j.jcis.2021.03.162
    A unique nanocomposite was fabricated using negatively charged manganese dioxide nanoparticles, poly (3,4-ethylenedioxythiophene) and reduced graphene oxide (MnO2/PEDOT/rGO). The nanocomposite was deposited on a glassy carbon electrode (GCE) functionalized with amino groups. The modified GCE was used to electrochemically detect dopamine (DA). The surface morphology, charge effect and electrochemical behaviours of the modified GCE were characterized by scanning electron microscopy, energy dispersive X-ray analysis (EDX), cyclic voltammetry and electrochemical impedance spectroscopy, respectively. The MnO2/PEDOT/rGO/GCE exhibited excellent performance towards DA sensing with a linear range between 0.05 and 135 µM with a lowest detection limit of 30 nM (S/N = 3). Selectivity towards DA was high in the presence of high concentrations of the typical interferences ascorbic acid and uric acid. The stability and reproducibility of the electrode were good. The sensor accurately determined DA in human serum. The synergic effect of the multiple components of the fabricated nanocomposite were critical to the good DA sensing performance. rGO provided a conductive backbone, PEDOT directed the uniform growth of MnO2 and adsorbed DA via pi-pi and electrostatic interaction, while the negatively charged MnO2 provided adsorption and catalytic sites for protonated DA. This work produced a promising biosensor that sensitively and selectively detected DA.
  2. Promsuwan K, Saichanapan J, Soleh A, Saisahas K, Samoson K, Wangchuk S, et al.
    Food Chem, 2024 Jul 30;447:138987.
    PMID: 38518621 DOI: 10.1016/j.foodchem.2024.138987
    Nitrite (NO2-) is widely used as an additive to extend the shelf life of food products. Excessive nitrite intake not only causes blood-related diseases but also has the potential risk of causing cancers. A disposable screen-printed electrode was modified with nano‑palladium decorated bismuth sulfide microspheres (nanoPd@Bi2S3MS/SPE), and integrated with a smartphone-interfaced potentiostat to develop a portable, electrochemical nitrite sensor. NanoPd@Bi2S3MS was prepared by the hydrothermal reduction of a Bi2S3MS and Pd2+ dispersion and drop cast on the SPE. The nanoPd@Bi2S3MS/SPE was coupled with a smartphone-controlled portable potentiostat and applied to determine nitrite in food samples. The linear range of the sensor was 0.01-500 μM and the limit of detection was 0.0033 μM. The proposed system showed good repeatability, reproducibility, catalytic stability, and immunity to interferences. The proposed electrode material and a smartphone-based small potentiostat created a simple, portable, fast electrochemical sensing system that accurately measured nitrite in food samples.
  3. Saisahas K, Soleh A, Promsuwan K, Phonchai A, Mohamed Sadiq NS, Teoh WK, et al.
    J Pharm Biomed Anal, 2021 Feb 08;198:113958.
    PMID: 33662759 DOI: 10.1016/j.jpba.2021.113958
    A portable electrochemical sensor was developed to determine xylazine in spiked beverages by adsorptive stripping voltammetry (AdSV). The sensor was based on a graphene nanoplatelets-modified screen-printed carbon electrode (GNPs/SPCE). The electrochemical behavior of xylazine at the GNPs/SPCE was an adsorption-controlled irreversible oxidation reaction. The loading of graphene nanoplatelets (GNPs) on the modified SPCE, electrolyte pH, and AdSV accumulation potential and time were optimized. Under optimal conditions, the GNPs/SPCE provided high sensitivity, linear ranges of 0.4-6.0 mg L-1 (r = 0.997) and 6.0-80.0 mg L-1 (r = 0.998) with a detection limit of 0.1 mg L-1 and a quantitation limit of 0.4 mg L-1. Repeatability was good. The accuracy of the proposed sensor was investigated by spiking six beverage samples at 1.0, 5.0, and 10.0 mg L-1. The recoveries from this method ranged from 80.8 ± 0.2-108.1 ± 0.3 %, indicating the good accuracy of the developed sensor. This portable electrochemical sensor can be used to screen for xylazine in beverage samples as evidence in cases of sexual assault or robbery.
  4. Saisahas K, Soleh A, Somsiri S, Senglan P, Promsuwan K, Saichanapan J, et al.
    Nanomaterials (Basel), 2021 Dec 28;12(1).
    PMID: 35010025 DOI: 10.3390/nano12010073
    A 3D porous graphene structure was directly induced by CO2 laser from the surface of Kapton tape (carbon source) supported by polyethylene terephthalate (PET) laminating film. A highly flexible laser-induced porous graphene (LI-PGr) electrode was then fabricated via a facile one-step method without reagent and solvent in a procedure that required no stencil mask. The method makes pattern design easy, and production cost-effective and scalable. We investigated the performance of the LI-PGr electrode for the detection of methamphetamine (MA) on household surfaces and in biological fluids. The material properties and morphology of LI-PGr were analysed by scanning electron microscopy (SEM), energy dispersive x-ray (EDX) and Raman spectroscopy. The LI-PGr electrode was used as the detector in a portable electrochemical sensor, which exhibited a linear range from 1.00 to 30.0 µg mL-1 and a detection limit of 0.31 µg mL-1. Reproducibility was good (relative standard deviation of 2.50% at 10.0 µg mL-1; n = 10) and anti-interference was excellent. The sensor showed good precision and successfully determined MA on household surfaces and in saliva samples.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links