Displaying all 7 publications

Abstract:
Sort:
  1. Basirun WJ, Sookhakian M, Baradaran S, Mahmoudian MR, Ebadi M
    Nanoscale Res Lett, 2013;8(1):397.
    PMID: 24059434 DOI: 10.1186/1556-276X-8-397
    Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO.
  2. Sookhakian M, Basirun WJ, Goh BT, Woi PM, Alias Y
    Colloids Surf B Biointerfaces, 2019 Apr 01;176:80-86.
    PMID: 30594706 DOI: 10.1016/j.colsurfb.2018.12.058
    A metal-inorganic composite, comprises of silver-molybdenum disulfide nanosheets (Ag@MoS2) was synthesized at low temperature. The Ag@MoS2 composite was drop-casted onto a glassy carbon electrode (GCE) for a highly selective dopamine (DA) detection in the presence of interfering compounds such as uric acid (UA) and ascorbic acid (AA). The physicochemical analysis of the nanosheets was carried out with X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. The as-prepared Ag@MoS2-modified GCE displayed excellent electrocatalytic activity toward DA oxidation, with a 0.2 μM detection limit at a signal-to-noise ratio of 3 and an extensive linear detection range from 1 μM to 500 μM (R2 = 0.9983). The fabricated non-enzymatic electrochemical sensor demonstrated superior selectivity and stability for the detection of DA with the removal of AA and UA interfering compounds.
  3. Razavi M, Sookhakian M, Goh BT, Bahron H, Mahmoud E, Alias Y
    Nanoscale Res Lett, 2022 Jan 10;17(1):9.
    PMID: 35006407 DOI: 10.1186/s11671-021-03644-6
    Electrochemical hydrogen evolution reaction (HER) refers to the process of generating hydrogen by splitting water molecules with applied external voltage on the active catalysts. HER reaction in the acidic medium can be studied by different mechanisms such as Volmer reaction (adsorption), Heyrovsky reaction (electrochemical desorption) or Tafel reaction (recombination). In this paper, facile hydrothermal methods are utilized to synthesis a high-performance metal-inorganic composite electrocatalyst, consisting of platinum nanoparticles (Pt) and molybdenum disulfide nanosheets (MoS2) with different platinum loading. The as-synthesized composite is further used as an electrocatalyst for HER. The as-synthesized Pt/Mo-90-modified glassy carbon electrode shows the best electrocatalytic performance than pure MoS2 nanosheets. It exhibits Pt-like performance with the lowest Tafel slope of 41 mV dec-1 and superior electrocatalytic stability in an acidic medium. According to this, the HER mechanism is related to the Volmer-Heyrovsky mechanism, where hydrogen adsorption and desorption occur in the two-step process. According to electrochemical impedance spectroscopy analysis, the presence of Pt nanoparticles enhanced the HER performance of the MoS2 nanosheets because of the increased number of charge carriers transport.
  4. Mahmoudian MR, Basirun WJ, Woi PM, Sookhakian M, Yousefi R, Ghadimi H, et al.
    Mater Sci Eng C Mater Biol Appl, 2016 Feb;59:500-508.
    PMID: 26652401 DOI: 10.1016/j.msec.2015.10.055
    The present study examines the synthesis of Co3O4 ultra-nanosheets (Co3O4 UNSs) and Co3O4 ultra-nanosheet-Ni(OH)2 (Co3O4 UNS-Ni(OH)2) via solvothermal process and their application as non-enzymatic electrochemical sensors for glucose detection. X-ray diffraction and transmission electron microscopy results confirmed the Co3O4 UNS deposition on Ni(OH)2 surface. The presence of Co3O4 UNSs on Ni (OH) 2 surface improved the sensitivity of glucose detection, from the increase of glucose oxidation peak current at the Co3O4 UNS-Ni(OH)2/glassy carbon electrode (current density: 2000μA·cm(-2)), compared to the Co3O4 UNSs. These results confirmed that Ni(OH)2 on glassy carbon electrode is a sensitive material for glucose detection, moreover the Co3O4 UNSs can increase the interaction and detection of glucose due to their high surface area. The estimated limit of detection (S/N=3) and limit of quantification (S/N=10) of the linear segment (5-40μM) are 1.08μM and 3.60μM respectively. The reproducibility experiments confirmed the feasibility of Co3O4 UNS-Ni(OH)2 for the quantitative detection of certain concentration ranges of glucose.
  5. Baradaran S, Moghaddam E, Nasiri-Tabrizi B, Basirun WJ, Mehrali M, Sookhakian M, et al.
    Mater Sci Eng C Mater Biol Appl, 2015 Apr;49:656-668.
    PMID: 25686995 DOI: 10.1016/j.msec.2015.01.050
    The effect of the addition of an ionic dopant to calcium phosphates for biomedical applications requires specific research due to the essential roles played in such processes. In the present study, the mechanical and biological properties of Ni-doped hydroxyapatite (HA) and Ni-doped HA mixed with graphene nanoplatelets (GNPs) were evaluated. Ni (3wt.% and 6wt.%)-doped HA was synthesized using a continuous precipitation method and calcined at 900°C for 1h. The GNP (0.5-2wt.%)-reinforced 6% Ni-doped HA (Ni6) composite was prepared using rotary ball milling for 15h. The sintering process was performed using hot isostatic pressing at processing conditions of 1150°C and 160MPa with a 1-h holding time. The results indicated that the phase compositions and structural features of the products were noticeably affected by the Ni and GNPs. The mechanical properties of Ni6 and 1.5Ni6 were increased by 55% and 75% in hardness, 59% and 163% in fracture toughness and 120% and 85% in elastic modulus compared with monolithic HA, respectively. The in-vitro biological behavior was investigated using h-FOB osteoblast cells in 1, 3 and 5days of culture. Based on the osteoblast results, the cytotoxicity of the products was indeed affected by the Ni doping. In addition, the effect of GNPs on the growth and proliferation of osteoblast cells was investigated in Ni6 composites containing different ratios of GNPs, where 1.5wt.% was the optimum value.
  6. Basirun WJ, Sookhakian M, Baradaran S, Endut Z, Mahmoudian MR, Ebadi M, et al.
    Sci Rep, 2015;5:9108.
    PMID: 25765731 DOI: 10.1038/srep09108
    Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm(-2), in contrast to MnO2, which produced a maximum power density of 9.2 mW cm(-2). The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms.
  7. Teridi MA, Sookhakian M, Basirun WJ, Zakaria R, Schneider FK, da Silva WJ, et al.
    Nanoscale, 2015 Apr 28;7(16):7091-100.
    PMID: 25640454 DOI: 10.1039/c4nr05874g
    High performance organic devices including polymer solar cells (PSCs) and light emitting diodes (PLEDs) were successfully demonstrated with the presence of highly ordered nanoimprinted Au nanodisks (Au NDs) in their solution-processed active/emissive layers, respectively. PSCs and PLEDs were fabricated using a low bandgap polymer and acceptor, nitrogen doped multiwalled carbon nanotubes poly[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]-thiophenediyl] (n-MWCNTs:PTB7), and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) and (4,4-N,N-dicarbazole) biphenyl (CBP) doped with tris(2-phenylpyridine) iridium(iii) (Ir(ppy)3) as active/emissive layers, respectively. We synthesized nitrogen doped graphene and used it as anodic buffer layer in both devices. The localized surface plasmon resonance (LSPR) effect from Au NDs clearly contributed to the increase in light absorption/emission in the active layers from electromagnetic field enhancement, which originated from the excited LSPR in PSCs and PLEDs. In addition to the high density of LSPR and strong exciton-SP coupling, the electroluminescent (EL) enhancement is ascribed to enhanced spontaneous emission rates. This is due to the plasmonic near-field effect induced by Au NDs. The PSCs and PLEDs exhibited 14.98% (8.08% to 9.29%) under one sun of simulated air mass 1.5 global (AM1.5G) illumination (100 mW cm(-2)) and 19.18% (8.24 to 9.82 lm W(-1)) enhancement in the power conversion efficiencies (PCEs) compared to the control devices without Au NDs.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links