MPT64 is a specific protein that is secreted by Mycobacterium tuberculosis complex (MTBC). The objective of this study was to obtain optimum culture conditions for MPT64 synthetic gene expression in Escherichia coli BL21 (DE3) by response surface methodology (RSM). The RSM was undertaken to optimize the culture conditions under different cultivation conditions (medium concentration, induction time and inducer concentration), designed by the factorial Box-Bhenken using Minitab 17 statistical software. From the randomized combination, 15 treatments and three center point repetitions were obtained. Furthermore, expression methods were carried out in the flask scale fermentation in accordance with the predetermined design. Then, the MPT64 protein in the cytoplasm of E. coli cell was isolated and characterized using sodium dodecyl sulfate polyacrilamide electrophoresis (SDS-PAGE) then quantified using the ImageJ program. The optimum conditions were two-fold medium concentration (tryptone 20 mg/mL, yeast extract 10 mg/mL, and sodium chloride 20 mg/mL), 5 h of induction time and 4 mM rhamnose. The average concentration of recombinant MPT64 at optimum conditions was 0.0392 mg/mL, higher than the predicted concentration of 0.0311 mg/mL. In conclusion, the relationship between the selected optimization parameters strongly influenced the level of MPT64 gene expression in E. coli BL21 (DE3).
Natural compounds provide precursors with various pharmacological activities and play an important role in discovering new chemical entities, including radiopharmaceuticals. In the development of new radiopharmaceuticals, iodine radioisotopes are widely used and interact with complex compounds including natural products. However, the development of radiopharmaceuticals from natural compounds with iodine radioisotopes has not been widely explored. This review summarizes the development of radiopharmaceuticals from natural compounds using iodine radioisotopes in the last 10 years, as well as discusses the challenges and strategies to improve future discovery of radiopharmaceuticals from natural resources. Literature research was conducted via PubMed, from which 32 research articles related to the development of natural compounds labeled with iodine radioisotopes were reported. From the literature, the challenges in developing radiopharmaceuticals from natural compounds were the purity and biodistribution. Despite the challenges, the development of radiopharmaceuticals from natural compounds is a golden opportunity for nuclear medicine advancement.
The high rate of incidence and mortality caused by breast cancer encourage urgent research to immediately develop new diagnostic and therapeutic agents for breast cancer. Alpha mangostin (AM) is a natural compound reported to have anti-breast cancer properties. Its electron-donating groups structure allows it to be labeled with an iodine-131 radioisotope to develop a candidate of a diagnostic and therapeutic agent for breast cancer. This study aims to prepare the [131I]Iodine-α-mangostin ([131I]I-AM) and evaluate its stability, lipophilicity, and cellular uptake in breast cancer cell lines. The [131I]I-AM was prepared by direct radiosynthesis with Chloramine-T method in two conditions (A: AM dissolved in NaOH, B: AM dissolved in ethanol). Reaction time, pH, and mass of the oxidizing agent were optimized as crucial parameters that affected the radiosynthesis reaction. Further analysis was conducted using the radiosynthesis conditions with the highest radiochemical purity (RCP). Stability tests were carried out at three storage conditions, including -20, 2, and 25 °C. A cellular uptake study was performed in T47D (breast cancer cell line) and Vero cells (noncancerous cell line) at various incubation times. The results show that the RCP values of [131I]I-AM under conditions A and B were 90.63 ± 0.44 and 95.17 ± 0.80% (n = 3), respectively. In the stability test, [131I]I-AM has an RCP above 90% after three days of storage at -20 °C. A significant difference was obtained between [131I]I-AM uptake in T47D and Vero cells. Based on these results, [131I]I-AM has been prepared with high RCP, stable at -20 °C, and specifically uptaken by breast cancer cell lines. Biodistribution evaluations in animals are recommended as further research in developing [131I]I-AM as a diagnostic and therapeutic agent for breast cancer.
In this study, the Mycobacterium tuberculosis protein 64 (MPT64) protein was constructed without any tags to facilitate the purification using column affinity chromatography, but the MPT64 must be obtained as a pure protein. This study was purpose to ensure the efficient extracting method to purify protein MPT64 directly from the polyacrylamide gel. The crude extract of extracellular protein containing MPT64 protein was separated into single protein band and the targeted protein which is located in the size of 24 kDa was excised. Each of the six bands was collected in a sterile microtube to be eluted using electroelution and the optimized of the passive-elution method. Both the elution methods demonstrated the purity level of the MPT64 protein by detecting a solely band on the gel at the 24 kDa. Among the variety of passive-elution time, the highest MPT64 protein concentration was 0.549 mg/ml after elution for 72 h. However, the electroelution result provided higher MPT64 protein concentration, i.e., 0.683 mg/mL. However, based on the recognition of the purified MPT64 protein on commercial detection kit of MPT64 protein, it showed that the positive result was only showed by the passive-elution extracting protein. Therefore, for purifying the protein MPT64 from the sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels, the efficient method was passive elution.