The role of micronutrients in health and disease has increased the curiosity and interest among researchers. The prime focus of this review is the significance of trace elements- calcium, vitamin D, selenium and zinc with cardiovascular health. WHO identified cardiovascular diseases (CVD) as the leading cause of deaths globally. Identifying the risk factors that could be modified and creating new treatment strategies remains to be the main concern for CVD prevention. The data that showed the relationship between trace elements and various ways in which they may contribute to cardiovascular health and disease from clinical trials and observational studies were collected from databases such as PubMed and Embase. Based on these collected data, it shows that either high or low circulating serum levels can be associated with the development of cardiovascular diseases. Micronutrients through diet contribute to improved cardiac health. However, due to our current lifestyle, there is a huge dependency on dietary supplements. Based on the observational studies, it is evident that supplements cause sudden increase in the circulating levels of the nutrients and result in cardiovascular damage. Thus, it is advisable to restrict the use of supplements, owing to the potent risks it may cause. In order to understand the exact mechanism between micronutrients and cardiac health, more clinical studies are required.
The ability of a diagnostic test to detect multiple pathogens simultaneously is useful to obtain meaningful information for clinical treatment and preventive measures. We report a highly sensitive and specific electrochemical biosensor assay for simultaneous detection of three gene targets using quantum dots (QDs). The targets are novel non-protein coding RNA (npcRNA) sequences of Vibrio cholerae, Salmonella sp. and Shigella sp., which cause diarrheal diseases. QDs (PbS, CdS, ZnS) were synthesized and functionalized with DNA probes that were specific to each pathogen. Electrochemical detection of QDs was performed using square wave anodic stripping voltammetry (SWASV). The QDs gave distinct peaks at 0.5 V (PbS), 0.75 V (CdS) and 1.1 V (ZnS). There was no interference in signal response when all three QDs were mixed and detected simultaneously. The detection limits of single and multiplex assays with linear targets and PCR products were in the attomolar ranges. The high assay sensitivity, in combination with specific npcRNA sequences as novel diagnostic targets, makes it a viable tool for detecting pathogens from food, environment and clinical samples.
Objective: Anemia bears a high global prevalence with about 1.6 billion people living with this affliction. Malaysia carries the burden of 13.8% anemia prevalence which urges for extensive research directed to its prediction and amelioration. This is the first study that aims to (a) propose simple non-invasive predictive anthropometric markers and their specific cut-off values for early prediction of anemia among the young adults in Malaysia, (b) provide anemia prevalence based on both gender and ethnicity among young adults of Malaysia. Method: The present cross-sectional study included 245 participants (113 men and 132 women) aged between 18 and 30 years. Anthropometric parameters were measured following the standard protocols. Blood samples were collected and hemoglobin levels were determined using the HemoCue haemoglobinometer (Hb 201+ System, Angelhom, Sweden) to detect the presence of anemia. The receiver operating characteristics (ROC) curve was employed to assess and compare the efficacy of anthropometric indices in the prediction of anemia. Data were analyzed using SPSS (v. 22.0, IBM, Chicago, IL, USA) and MedCalc (v. 19.05, Ostend, Belgium). Result: The ROC analysis indicates that body mass index (BMI) is the best anthropometric marker with the highest area under the curve (AUC) and specificity (SP) for predicting the presence of anemia in young adults in Malaysia. Thus, the study proposes the optimal cut-off value of BMI for young men of Malaysia as 20.65 kg/m2 (AUC: 0.889) and young women of Malaysia as 19.7 kg/m2 (AUC: 0.904). The study also reports that Malaysian Indians have the highest prevalence of anemia (26.22%) followed by Malays (21.54%), "Others" (indigenous ethnic group) (20%), and Chinese (14.5%), with an overall higher prevalence of anemia in young adult women (21.96%) than in men (18.6%) of Malaysia. Conclusion: The proposed anemia-predictive anthropometric markers with optimal cut-off values will aid early detection of anemia among young adults in Malaysia, and given its simple, inexpensive, and intelligible approach, it can be widely used. The ease of anemia prediction together with the reported distribution of anemia prevalence based on gender and ethnicity will facilitate in gauging the necessary extent of strategies of anemia management in the young adult population of Malaysia.
Proteus vulgaris is a rod-shaped Gram-negative bacterium known to be the member of Enterobacteriaceae that is able to cause disease in human being. Generally, non-protein-coding RNAs (npcRNAs) do not code for proteins, but they play a vital role in gene regulation at the RNA level including pathogenicity. The present study aims at elucidating homologous npcRNAs from other bacteria in Proteus vulgaris. A comparative genomic analysis was carried out to identify npcRNA homolog of other Enterobacteriaceae pathogens in Proteus vulgaris. A total of 231 npcRNAs previously reported in Salmonella typhi, Salmonella typhimurium and Escherichia coli were screened using BLASTn tool against Proteus vulgaris genome. Interestingly, 33 npcRNAs are homologs to Proteus vulgaris. Northern blot analysis of 6 out of 33 npcRNA candidates confirmed their expression and showed that most of them are differentially expressed during lag, exponential and stationary growth phases. This study is the first approach of identification and characterization of npcRNAs in P. vulgaris. Hence, this could be a pioneer study to further validate the regulatory functions of these npcRNAs to fill the gaps in understanding of the pathogenicity of P. vulgaris.
How to cite this article: Jose J, Suresh V, Magoon R. Optic Nerve Sheath Diameter in Hyponatremia: A Closer Look. Indian J Crit Care Med 2023;27(6):452.