Displaying all 5 publications

Abstract:
Sort:
  1. Lee WC, Russell B, Lau YL, Fong MY, Chu C, Sriprawat K, et al.
    PLoS One, 2013;8(4):e60303.
    PMID: 23565221 DOI: 10.1371/journal.pone.0060303
    The quantity of circulating reticulocytes is an important indicator of erythropoietic activity in response to a wide range of haematological pathologies. While most modern laboratories use flow cytometry to quantify reticulocytes, most field laboratories still rely on 'subvital' staining. The specialist 'subvital' stains, New Methylene Blue (NMB) and Brilliant Crésyl Blue are often difficult to procure, toxic, and show inconsistencies between batches. Here we demonstrate the utility of Giemsa's stain (commonly used microbiology and parasitology) in a 'subvital' manner to provide an accurate method to visualize and count reticulocytes in blood samples from normal and malaria-infected individuals.
  2. Zhang R, Lee WC, Lau YL, Albrecht L, Lopes SC, Costa FT, et al.
    PLoS Negl Trop Dis, 2016 08;10(8):e0004912.
    PMID: 27509168 DOI: 10.1371/journal.pntd.0004912
    Malaria parasites dramatically alter the rheological properties of infected red blood cells. In the case of Plasmodium vivax, the parasite rapidly decreases the shear elastic modulus of the invaded RBC, enabling it to avoid splenic clearance. This study highlights correlation between rosette formation and altered membrane deformability of P. vivax-infected erythrocytes, where the rosette-forming infected erythrocytes are significantly more rigid than their non-rosetting counterparts. The adhesion of normocytes to the PvIRBC is strong (mean binding force of 440pN) resulting in stable rosette formation even under high physiological shear flow stress. Rosetting may contribute to the sequestration of PvIRBC schizonts in the host microvasculature or spleen.
  3. Zhang R, Suwanarusk R, Malleret B, Cooke BM, Nosten F, Lau YL, et al.
    J Infect Dis, 2016 Jan 1;213(1):100-4.
    PMID: 26136472 DOI: 10.1093/infdis/jiv358
    Recent clinical trials revealed a surprisingly rapid clearance of red blood cells (RBCs) infected with malaria parasites by the spiroindolone KAE609. Here, we show that ring-stage parasite-infected RBCs exposed to KAE609 become spherical and rigid, probably through osmotic dysregulation consequent to the disruption of the parasite's sodium efflux pump (adenosine triphosphate 4). We also show that this peculiar drug effect is likely to cause accelerated splenic clearance of the rheologically impaired Plasmodium vivax- and Plasmodium falciparum-infected RBCs.
  4. Lee WC, Malleret B, Lau YL, Mauduit M, Fong MY, Cho JS, et al.
    Blood, 2014 May 01;123(18):e100-9.
    PMID: 24652986 DOI: 10.1182/blood-2013-12-541698
    Rosetting phenomenon has been linked to malaria pathogenesis. Although rosetting occurs in all causes of human malaria, most data on this subject has been derived from Plasmodium falciparum. Here, we investigate the function and factors affecting rosette formation in Plasmodium vivax. To achieve this, we used a range of novel ex vivo protocols to study fresh and cryopreserved P vivax (n = 135) and P falciparum (n = 77) isolates from Thailand. Rosetting is more common in vivax than falciparum malaria, both in terms of incidence in patient samples and percentage of infected erythrocytes forming rosettes. Rosetting to P vivax asexual and sexual stages was evident 20 hours postreticulocyte invasion, reaching a plateau after 30 hours. Host ABO blood group, reticulocyte count, and parasitemia were not correlated with P vivax rosetting. Importantly, mature erythrocytes (normocytes), rather than reticulocytes, preferentially form rosetting complexes, indicating that this process is unlikely to directly facilitate merozoite invasion. Although antibodies against host erythrocyte receptors CD235a and CD35 had no effect, Ag-binding fragment against the BRIC 4 region of CD236R significantly inhibited rosette formation. Rosetting assays using CD236R knockdown normocytes derived from hematopoietic stem cells further supports the role of glycophorin C as a receptor in P vivax rosette formation.
  5. Kosaisavee V, Suwanarusk R, Chua ACY, Kyle DE, Malleret B, Zhang R, et al.
    Blood, 2017 09 14;130(11):1357-1363.
    PMID: 28698207 DOI: 10.1182/blood-2017-02-764787
    Two malaria parasites of Southeast Asian macaques, Plasmodium knowlesi and P cynomolgi, can infect humans experimentally. In Malaysia, where both species are common, zoonotic knowlesi malaria has recently become dominant, and cases are recorded throughout the region. By contrast, to date, only a single case of naturally acquired P cynomolgi has been found in humans. In this study, we show that whereas P cynomolgi merozoites invade monkey red blood cells indiscriminately in vitro, in humans, they are restricted to reticulocytes expressing both transferrin receptor 1 (Trf1 or CD71) and the Duffy antigen/chemokine receptor (DARC or CD234). This likely contributes to the paucity of detectable zoonotic cynomolgi malaria. We further describe postinvasion morphologic and rheologic alterations in P cynomolgi-infected human reticulocytes that are strikingly similar to those observed for P vivax These observations stress the value of P cynomolgi as a model in the development of blood stage vaccines against vivax malaria.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links