Edible bird's nest (EBN) is a functional food renowned for its numerous health benefits. While its nutritional and therapeutic value is well-documented, the metabolites contributing to the bioactivities of EBN remain poorly understood. This study aimed to identify the metabolites present in EBN subjected to different treatments, including double-boiled EBN (EBNdb), EBN hydrolysate (EBNhydro), EBN fermented with Lactobacillus helveticus (EBNLH), Latilactobacillus curvatus (EBNLC), and Latilactobacillus sakei (EBNLS) using liquid chromatography-mass spectrometry (LC-MS) and correlate the identified bioactive metabolites with the bioactivities of EBN. It was found that the fermented EBNs exhibited the highest number of metabolites, with 76 tentatively identified, followed by EBNhydro (45) and EBNdb (37). Citric acid (1.97-4.48 g/kg) was present in all treated EBN samples, while L(+)-lactic acid (3.03-8.07 g/kg) and adipic acid (2.33-3.18 g/kg) were only found in fermented EBNs. Among the treated EBN samples, EBNLC demonstrated the significantly highest (p ≤ 0.05) antioxidative (22.34 ± 0.41 % 1,1-diphenyl-2-picrylhydrazil radical scavenging activity), antihypertensive (5.46 ± 0.26 % angiotensin-converting enzyme inhibitory activity), and antihyperglycemic activities (6.48 ± 0.34 % α-amylase inhibitory activity). A total of 18 metabolites, including citric acid, 4-sphingenin, N-acetylcitrulline, 4-aminophenol, L(+)-lactic acid, 2-oxoadipate, sildenafil, formylglycinamidin-RP, 11β,17α,21-α-5β-pregnane-3,20-dione, 2-ketobutyric acid, homoserine, benzaldehyde, 1-pyrroline4-hydroxy-2-carboxylate, nortriptyline, 1-methylguanine, 3-hydroxy-trimethyllysine, 3-phenylpropionate, and reserphine were predicted as bioactive metabolites using the partial least squares discriminant analysis (PLS-DA). This study provides valuable insights into the metabolites present in EBN and serves as fundamental data for future investigations into the bioactive compounds responsible for its specific health benefits, potentially leading to the development of enhanced EBN-based functional foods.
Immunosuppressive agents are used for the treatment of immune-mediated myocarditis; however, the need to develop a more effective therapeutic approach remains. Nano-sized liposomes may accumulate in and selectively deliver drugs to an inflammatory lesion with enhanced vascular permeability. The aims of this study were to investigate the distribution of liposomal FK506, an immunosuppressive drug encapsulated within liposomes, and the drug's effects on cardiac function in a rat experimental autoimmune myocarditis (EAM) model. We prepared polyethylene glycol-modified liposomal FK506 (mean diameter: 109.5 ± 4.4 nm). We induced EAM by immunization with porcine myosin and assessed the tissue distribution of the nano-sized beads and liposomal FK506 in this model. After liposomal or free FK506 was administered on days 14 and 17 after immunization, the cytokine expression in the rat hearts along with the histological findings and hemodynamic parameters were determined on day 21. Ex vivo fluorescent imaging revealed that intravenously administered fluorescent-labeled nano-sized beads had accumulated in myocarditic but not normal hearts on day 14 after immunization and thereafter. Compared to the administration of free FK506, FK506 levels were increased in both the plasma and hearts of EAM rats when liposomal FK506 was administered. The administration of liposomal FK506 markedly suppressed the expression of cytokines, such as interferon-γ and tumor necrosis factor-α, and reduced inflammation and fibrosis in the myocardium on day 21 compared to free FK506. The administration of liposomal FK506 also markedly ameliorated cardiac dysfunction on day 21 compared to free FK506. Nano-sized liposomes may be a promising drug delivery system for targeting myocarditic hearts with cardioprotective agents.