Displaying all 3 publications

Abstract:
Sort:
  1. Lau TTV, Tan JMA, Puthucheary SD, Puah SM, Chua KH
    Braz J Microbiol, 2020 Sep;51(3):909-918.
    PMID: 32067209 DOI: 10.1007/s42770-020-00239-8
    Aeromonas dhakensis is an emergent human pathogen with medical importance. This study was aimed to determine the sequence types (STs), genetic diversity, and phylogenetic relationships of different clinical sources of 47 A. dhakensis from Malaysia using multilocus sequence typing (MLST), goeBURST, and phylogenetic analyses. The analysis of a concatenated six-gene tree with a nucleotide length of 2994 bp based on six housekeeping genes (gyrB, groL, gltA, metG, ppsA, and recA) and independent analyses of single gene fragments was performed. MLST was able to group 47 A. dhakensis from our collection into 36 STs in which 34 STs are novel STs. The most abundant ST521 consisted of five strains from peritoneal fluid and two strains from stools. Comparison of 62 global A. dhakensis was carried out via goeBURST; 94.4% (34/36) of the identified STs are novel and unique in Malaysia. Two STs (111 and 541) were grouped into clonal complexes among our strains and 32 STs occurred as singletons. Single-gene phylogenetic trees showed varying topologies; groL and rpoD grouped all A. dhakensis into a tight-cluster with bootstrap values of 100% and 99%, respectively. A poor phylogenetic resolution encountered in single-gene analyses was buffered by the multilocus phylogenetic tree that offered high discriminatory power (bootstrap value = 100%) in resolving all A. dhakensis from A. hydrophila and delineating the relationship among other taxa. Genetic diversity analysis showed groL as the most conserved gene and ppsA as the most variable gene. This study revealed novel STs and high genetic diversity among clinical A. dhakensis from Malaysia.
  2. Lau TV, Puah SM, Tan JMA, Puthucheary SD, Chua KH
    Braz J Microbiol, 2021 Jun;52(2):517-529.
    PMID: 33768508 DOI: 10.1007/s42770-021-00457-8
    Flagellar-mediated motility is a crucial virulence factor in many bacterial species. A dual flagellar system has been described in aeromonads; however, there is no flagella-related study in the emergent human pathogen Aeromonas dhakensis. Using 46 clinical A. dhakensis, phenotypic motility, genotypic characteristics (flagellar genes and sequence types), biochemical properties and their relationship were investigated in this study. All 46 strains showed swimming motility at 30 °C in 0.3% Bacto agar and carried the most prevalent 6 polar flagellar genes cheA, flgE, flgG, flgH, flgL, and flgN. On the contrary, only 18 strains (39%) demonstrated swarming motility on 0.5% Eiken agar at 30 °C and they harbored 11 lateral flagellar genes lafB, lafK, lafS, lafT, lafU, flgCL, flgGL, flgNL, fliEL, fliFL, and fliGL. No association was found between biochemical properties and motility phenotypes. Interestingly, a significant association between swarming and strains isolated from pus was observed (p = 0.0171). Three strains 187, 277, and 289 isolated from pus belonged to novel sequence types (ST522 and ST524) exhibited fast swimming and swarming profiles, and they harbored > 90% of the flagellar genes tested. Our findings provide a fundamental understanding of flagellar-mediated motility in A. dhakensis.
  3. Lau TV, Puah SM, Tan JMA, Merino S, Puthucheary SD, Chua KH
    Microb Pathog, 2023 Apr;177:106059.
    PMID: 36878334 DOI: 10.1016/j.micpath.2023.106059
    Aeromonas dhakensis possesses dual flagellar systems for motility under different environments. Flagella-mediated motility is necessary for biofilm formation through an initial attachment of bacteria to the surface, but this has not been elucidated in A. dhakensis. This study investigates the role of polar (flaH, maf1) and lateral (lafB, lafK and lafS) flagellar genes in the biofilm formation of a clinical A. dhakensis strain WT187 isolated from burn wound infection. Five deletion mutants and corresponding complemented strains were constructed using pDM4 and pBAD33 vectors, respectively, and analyzed for motility and biofilm formation using crystal violet staining and real-time impedance-based assays. All mutants were significantly reduced in swimming (p 
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links