Displaying all 10 publications

Abstract:
Sort:
  1. Thevarajoo S, Selvaratnam C, Goh KM, Hong KW, Chan XY, Chan KG, et al.
    Int J Syst Evol Microbiol, 2016 Sep;66(9):3662-3668.
    PMID: 27334651 DOI: 10.1099/ijsem.0.001248
    A Gram-staining-negative, aerobic, yellow-orange-pigmented, rod-shaped bacterium designated D-24T was isolated from seawater from sandy shoreline in Johor, Malaysia. The 16S rRNA gene sequence analysis revealed that strain D-24T is affiliated with the genus Vitellibacter. It shared more than 96 % sequence similarity with the types of some of the validly published species of the genus: Vitellibactervladivostokensis KMM 3516T (99.5 %), Vitellibactersoesokkakensis RSSK-12T (97.3 %), VitellibacterechinoideorumCC-CZW007T (96.9 %), VitellibacternionensisVBW088T (96.7 %) and Vitellibacteraestuarii JCM 15496T (96.3 %). DNA-DNA hybridization and genome-based analysis of average nucleotide identity (ANI) of strain D-24T versus V.vladivostokensisKMM 3516T exhibited values of 35.9±0.14 % and 89.26 %, respectively. Strain D-24T showed an even lower ANI value of 80.88 % with V. soesokkakensis RSSK-12T. The major menaquinone of strain D-24T was MK-6, and the predominant fatty acids were iso-C15 : 0 and iso-C17 : 0 3-OH. Strain D-24T contained major amounts of phosphatidylethanolamine, two lipids and two aminolipids, and a phosphoglycolipid that was different to that of other species of the genus Vitellibacter. The genomic DNA G+C content was 40.6 mol%. On the basis of phenotypic properties, DNA-DNA relatedness, ANI value and chemotaxonomic analyses, strain D-24T represents a novel species of the genus Vitellibacter, for which the name Vitellibacter aquimaris sp. nov. is proposed. The type strain is D-24T (=KCTC 42708T=DSM 101732T).
  2. Selvaratnam C, Thevarajoo S, Ee R, Chan KG, Bennett JP, Goh KM, et al.
    Mar Genomics, 2016 Apr 20.
    PMID: 27107724 DOI: 10.1016/j.margen.2016.04.004
    Roseivirga sp. strain D-25 is an aerobic marine bacterium isolated from seawater collected from Desaru beach, Malaysia. To date, the genus Roseivirga consists of only four species with no genome sequence reported. Here, we present the genome sequence of Roseivirga sp. strain D-25 (=KCTC 42709=DSM 101709), with a genome size of approximately 4.08Mbp and G+C content of 39.18%. Genome sequence analysis of strain D-25 revealed the presence of genes related to petroleum hydrocarbon degradation, 2,4,6-trinitrotoluene detoxification, heavy metals bioremediation and production of carotenoids, which shed light on the potential application of this strain.
  3. Thevarajoo S, Selvaratnam C, Chan KG, Goh KM, Chong CS
    Mar Genomics, 2015 Oct;23:49-50.
    PMID: 25957696 DOI: 10.1016/j.margen.2015.04.009
    Type strain Vitellibacter vladivostokensis KMM 3516(T) (=NBRC 16718(T)) belongs to the phylum Cytophaga-Flavobacterium-Bacteroides. To date, no genomes of the Vitellibacter spp. have been reported, and their metabolic pathways are unknown. This study reports the draft genome sequence of V. vladivostokensis. Moreover, mining of genes associated with proteolytic enzymes was performed to provide insights for further enzyme characterization.
  4. Lim JC, Thevarajoo S, Selvaratnam C, Goh KM, Shamsir MS, Ibrahim Z, et al.
    J Basic Microbiol, 2017 Feb;57(2):151-161.
    PMID: 27859397 DOI: 10.1002/jobm.201600494
    Anoxybacillus sp. SK 3-4 is a Gram-positive, rod-shaped bacterium and a member of family Bacillaceae. We had previously reported that the strain is an aluminum resistant thermophilic bacterium. This is the first report to provide a detailed analysis of the global transcriptional response of Anoxybacillus when the cells were exposed to 600 mg L(-1) of aluminum. The transcriptome was sequenced using Illumina MiSeq sequencer. Total of 708 genes were differentially expressed (fold change >2.00) with 316 genes were up-regulated while 347 genes were down-regulated, in comparing to control with no aluminum added in the culture. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the majority of genes encoding for cell metabolism such as glycolysis, sulfur metabolism, cysteine and methionine metabolism were up-regulated; while most of the gene associated with tricarboxylic acid cycle (TCA cycle) and valine, leucine and isoleucine metabolism were down-regulated. In addition, a significant number of the genes encoding ABC transporters, metal ions transporters, and some stress response proteins were also differentially expressed following aluminum exposure. The findings provide further insight and help us to understand on the resistance of Anoxybacillus sp. SK 3-4 toward aluminium.
  5. Selvaratnam C, Thevarajoo S, Goh KM, Chan KG, Chong CS
    Int J Syst Evol Microbiol, 2016 Dec;66(12):5537-5543.
    PMID: 28077207 DOI: 10.1099/ijsem.0.001553
    The genus Roseivirga currently includes five species: Roseivirga ehrenbergii, R. echinicomitans, R. spongicola, R. marina and R. maritima. Marinicola seohaensis SW-152T was renamed as Roseivirgaseohaensis SW-152T and then reclassified again as a later heterotypic synonym of R. ehrenbergii KMM 6017T. In this study, based on average nucleotide identity and digital DNA-DNA hybridization values obtained from in silico methods, together with fatty acid analyses and biochemical tests, we propose to reclassify R. ehrenbergii SW-152 as Roseivirga seohaensis comb. nov. (type strain SW-152T=KCTC 1231T=JCM 12600T). In this work, a Gram-negative, rod-shaped, aerobic and pink-pigmented strain designated as D-25T was isolated from seawater (Desaru Beach, Johor, Malaysia). The 16S rRNA gene analysis revealed that strain D-25T was related to the genus Roseivirga. Strain D-25T was found most closely related to R. seohaensis SW-152T based on average nucleotide identity and digital DNA-DNA hybridization values, phenotypic and chemotaxonomic analyses, indicating that these strains belong to the same species. Thus, it is proposed to split the species R.oseivirga seohaensis into two novel subspecies, Roseivirga seohaensissubsp. seohaensis subsp. nov. (type strain SW-152T=KCTC 12312T=JCM 12600T) and Roseivirga seohaensissubsp. aquiponti subsp. nov. (type strain D-25T=KCTC 42709T=DSM 101709T) and to emend the description of the genus Roseivirga.
  6. Chen SJ, Lam MQ, Thevarajoo S, Abd Manan F, Yahya A, Chong CS
    3 Biotech, 2020 Apr;10(4):160.
    PMID: 32206494 DOI: 10.1007/s13205-020-2148-z
    In this study, a bacterial strain CP22 with ability to produce cellulase, xylanase and mannanase was isolated from the oil palm compost. Based on the 16S rRNA gene analysis, the strain was affiliated to genus Micromonospora. To further investigate genes that are related to cellulose and hemicellulose degradation, the genome of strain CP22 was sequenced, annotated and analyzed. The de novo assembled genome of strain CP22 featured a size of 5,856,203 bp with G + C content of 70.84%. Detailed genome analysis on lignocellulose degradation revealed a total of 60 genes consisting of 47 glycoside hydrolase domains and 16 carbohydrate esterase domains predicted to be involved in cellulolytic and hemicellulolytic deconstruction. Particularly, 20 genes encode for cellulases (8 endoglucanases, 3 exoglucanases and 9 β-glucosidases) and 40 genes encode for hemicellulases (15 endo-1,4-β-xylanase, 3 β-xylosidase, 3 α-arabinofuranosidase, 10 acetyl xylan esterase, 6 polysaccharide deacetylase, 1 β-mannanase, 1 β-mannosidase and 1 α-galactosidase). Thirty-two genes encoding carbohydrate-binding modules (CBM) from six different families (CBM2, CBM4, CBM6, CBM9, CBM13 and CBM22) were present in the genome of strain CP22. These CBMs were found in 27 cellulolytic and hemicellulolytic genes, indicating their potential role in enhancing the substrate-binding capability of the enzymes. CBM2 and CBM13 are the major CBMs present in cellulases and hemicellulases (xylanases and mannanases), respectively. Moreover, a GH10 xylanase was found to contain 3 CBMs (1 CBM9 and 2 CBM22) and these CBMs were reported to bind specifically to xylan. This genome-based analysis could facilitate the exploration of this strain for lignocellulosic biomass degradation.
  7. Thevarajoo S, Selvaratnam C, Chan KG, Goh KM, Chong CS
    Braz J Microbiol, 2017 07 19;49(1):10-12.
    PMID: 28778371 DOI: 10.1016/j.bjm.2017.03.013
    Vitellibacter aquimaris D-24T (=KCTC 42708T=DSM 101732T), a halophilic marine bacterium, was isolated from seawater collected from Desaru beach, Malaysia. Here, we present the draft genome sequence of D-24T with a genome size of approximately 3.1Mbp and G+C content of 39.93%. The genome of D-24T contains genes involved in reducing a potent greenhouse gas (N2O) in the environment and the degradation of proteinaceous compounds. Genome availability will provide insights into potential biotechnological and environmental applications of this bacterium.
  8. Selvaratnam C, Thevarajoo S, Goh KM, Chan KG, Chong CS
    Mar Genomics, 2018 Apr;38:97-101.
    PMID: 29306571 DOI: 10.1016/j.margen.2017.12.008
    To date, the genus Roseivirga consists of six species with one subspecies and is one of the least-studied genera among the family Flammeovirgaceae. In order to further explore this genus, the genome sequences of five Roseivirga spp. were compared and described in this study. The Roseivirga genomes have similar sizes in the range of 4.08-4.47Mb with an average of 4.22Mb. Several key proteins related to osmotic stress adaptation were identified in Roseivirga spp. including betaine transporter, choline dehydrogenase, and glutamate synthases. Significant amount of proteins associated with amino acid transport and metabolism were also present in Roseivirga genome. All five Roseivirga spp. were able to grow in medium contained casamino acids (mixture of amino acids) as sole carbon or nitrogen sources. Taken together, these findings suggested the potential role of Roseivirga in decomposing organic nitrogen matter in marine environment.
  9. Lam MQ, Oates NC, Thevarajoo S, Tokiman L, Goh KM, McQueen-Mason SJ, et al.
    Genomics, 2020 01;112(1):952-960.
    PMID: 31201854 DOI: 10.1016/j.ygeno.2019.06.011
    The genus Meridianimaribacter is one of the least-studied genera within Cytophaga-Flavobacteria. To date, no genomic analysis of Meridianimaribacter has been reported. In this study, Meridianimaribacter sp. strain CL38, a lignocellulose degrading halophile was isolated from mangrove soil. The genome of strain CL38 was sequenced and analyzed. The assembled genome contains 17 contigs with 3.33 Mbp, a GC content of 33.13% and a total of 2982 genes predicted. Lignocellulose degrading enzymes such as cellulases (GH3, 5, 9, 16, 74 and 144), xylanases (GH43 and CE4) and mannanases (GH5, 26, 27 and 130) are encoded in the genome. Furthermore, strain CL38 demonstrated its ability to decompose empty fruit bunch, a lignocellulosic waste residue arising from palm oil industry. The genome information coupled with experimental studies confirmed the ability of strain CL38 to degrade lignocellulosic biomass. Therefore, Meridianimaribacter sp. strain CL38, with its halotolerance, could be useful for seawater based lignocellulosic biorefining.
  10. Lam MQ, Nik Mut NN, Thevarajoo S, Chen SJ, Selvaratnam C, Hussin H, et al.
    3 Biotech, 2018 Feb;8(2):104.
    PMID: 29404232 DOI: 10.1007/s13205-018-1133-2
    A halophilic bacterium, Virgibacillus sp. strain CD6, was isolated from salted fish and its extracellular protease was characterized. Protease production was found to be highest when yeast extract was used as nitrogen source for growth. The protease exhibited stability at wide range of salt concentration (0-12.5%, w/v), temperatures (20-60 °C), and pH (4-10) with maximum activity at 10.0% (w/v) NaCl, 60 °C, pH 7 and 10, indicating its polyextremophilicity. The protease activity was enhanced in the presence of Mg2+, Mn2+, Cd2+, and Al3+ (107-122% relative activity), and with retention of activity > 80% for all of other metal ions examined (K+, Ca2+, Cu2+, Co2+, Ni2+, Zn2+, and Fe3+). Both PMSF and EDTA inhibited protease activity, denoting serine protease and metalloprotease properties, respectively. High stability (> 70%) was demonstrated in the presence of organic solvents and detergent constituents, and the extracellular protease from strain CD6 was also found to be compatible in commercial detergents. Proteinaceous stain removal efficacy revealed that crude protease of strain CD6 could significantly enhance the performance of commercial detergent. The protease from Virgibacillus sp. strain CD6 could serve as a promising alternative for various applications, especially in detergent industry.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links