Displaying all 3 publications

Abstract:
Sort:
  1. Arshad A, Ahemad S, Saleem H, Saleem M, Zengin G, Abdallah HH, et al.
    Biomolecules, 2021 01 04;11(1).
    PMID: 33406643 DOI: 10.3390/biom11010053
    Heliotropium is one of the most important plant genera to have conventional folklore importance, and hence is a potential source of bioactive compounds. Thus, the present study was designed to explore the therapeutic potential of Heliotropium crispum Desf., a relatively under-explored medicinal plant species. Methanolic extracts prepared from a whole plant of H. crispum were studied for phytochemical composition and possible in vitro and in silico biological properties. Antioxidant potential was assessed via six different assays, and enzyme inhibition potential against key clinical enzymes involved in neurodegenerative diseases (acetylcholinesterase (AChE) and butyrylcholinesterase (BChE)), diabetes (α-amylase and α-glucosidase), and skin problems (tyrosinase) was assayed. Phytochemical composition was established via determination of the total bioactive contents and reverse phase ultra-high performance liquid chromatography mass spectrometry (RP-UHPLC-MS) analysis. Chemical profiling revealed the tentative presence of 50 secondary metabolites. The plant extract exhibited significant inhibition against AChE and BChE enzymes, with values of 3.80 and 3.44 mg GALAE/g extract, respectively. Further, the extract displayed considerable free radical scavenging activity against DPPH and ABTS radicals, with potential values of 43.19 and 41.80 mg TE/g extract, respectively. In addition, the selected compounds were then docked against the tested enzymes, which have shown high inhibition affinity. To conclude, H. crispum was found to harbor bioactive compounds and showed potent biological activities which could be further explored for potential uses in nutraceutical and pharmaceutical industries, particularly as a neuroprotective agent.
  2. Saleem H, Khurshid U, Sarfraz M, Tousif MI, Alamri A, Anwar S, et al.
    Food Chem Toxicol, 2021 Aug;154:112348.
    PMID: 34144099 DOI: 10.1016/j.fct.2021.112348
    Suaeda fruticosa is an edible medicinal halophyte known for its traditional uses. In this study, methanol and dichloromethane extracts of S. fruticosa were explored for phytochemical, biological and toxicological parameters. Total phenolic and flavonoid constituents were determined by using standard aluminum chloride and Folin-Ciocalteu methods, and UHPLC-MS analysis of methanol extract was performed for tentative identification of secondary metabolites. Different standard methods like DPPH, ABTS, FRAP, CUPRAC, total antioxidant capacity (TAC), and metal chelation assays were utilized to find out the antioxidant potential of extracts. Enzyme inhibition studies of extracts against acetylcholinesterase, butyrylcholinesterase, tyrosinase, α-amylase and, α-glucosidase enzymes were also studied. Likewise, the cytotoxicity was also assessed against MCF-7, MDA-MB-231, and DU-145 cell lines. The higher phenolic and flavonoids contents were observed in methanol extracts which can be correlated to its higher radical scavenging potential. Similarly, 11 different secondary metabolites were tentatively identified by UHPLC profiling. Both the extract showed significant inhibition against all the enzymes except for α-glucosidase. Moreover, docking studies were also performed against the tested enzymes. In the case of cytotoxicity, both the samples were found moderately toxic against the tested cell lines. This plant can be explored further for its potential therapeutic and edible uses.
  3. Saleem H, Yaqub A, Rafique R, Ali Chohan T, Malik DE, Tousif MI, et al.
    PMID: 37255100 DOI: 10.1080/10408398.2023.2217264
    Enzymes are biologically active complex protein molecules that catalyze most chemical reactions in living organisms, and their inhibitors accelerate biological processes. This review emphasizes medicinal food plants and their isolated chemicals inhibiting clinically important enzymes in common diseases. A mechanistic overview was investigated to explain the mechanism of these food bases enzyme inhibitors. The enzyme inhibition potential of medicinal food plants and their isolated substances was searched in Ovid, PubMed, Science Direct, Scopus, and Google Scholar. Cholinesterase, amylase, glucosidase, xanthine oxidase, tyrosinase, urease, lipoxygenase, and others were inhibited by crude extracts, solvent fractions, or isolated pure chemicals from medicinal food plants. Several natural compounds have shown tyrosinase inhibition potential, including quercetin, glabridin, phloretin-4-O-β-D-glucopyranoside, lupinalbin, and others. Some of these compounds' inhibitory kinetics and molecular mechanisms are also discussed. Phenolics and flavonoids inhibit enzyme activity best among the secondary metabolites investigated. Several studies showed flavonoids' significant antioxidant and anti-inflammatory activities, highlighting their medicinal potential. Overall, many medicinal food plants, their crude extracts/fractions, and isolated compounds have been studied, and some promising compounds depending on the enzyme have been found. Still, more studies are recommended to derive potential pharmacologically active functional foods.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links