By applying a hexagon-diamond search (HDS) method to an ultrasound image, the path of an object is able to be monitored by extracting images into macro-blocks, thereby achieving image redundancy is reduced from one frame to another, and also ascertaining the motion vector within the parameters searched. The HDS algorithm uses six search points to form the six sides of the hexagon pattern, a centre point, and a further four search points to create diamond pattern within the hexagon that clarifies the focus of the subject area.
Images of scanning electron microscope are usually in the monochrome mode. A simple and user-friendly approach is proposed to improve the mechanical contrast of the scanning electron microscope grey images. Also, most colourization techniques involve image segmentation or region tracking, which tend to degrade the image with fuzzy or complex region boundaries. A technique is proposed, which is a hybrid between the Canny edge detection technique and the optimization technique. Compared with existing methods, the new Canny optimization technique gives satisfactory results for scanning electron microscope images.
The mixed Lagrange time-delay estimation autoregressive (MLTDEAR) model is proposed as a solution to estimate image noise variance. The only information available to the proposed estimator is a corrupted image and the nature of additive white noise. The image autocorrelation function is calculated and used to obtain the MLTDEAR model coefficients; the relationship between the MLTDEAR and linear prediction models is utilized to estimate the model coefficients. The forward-backward prediction is then used to obtain the predictor coefficients; the MLTDEAR model coefficients and prior samples of zero-offset autocorrelation values are next used to predict the power of the noise-free image. Furthermore, the fundamental performance limit of the signal and noise estimation, as derived from the Cramer-Rao inequality, is presented.
A new filter is developed for the enhancement of scanning electron microscope (SEM) images. A mixed Lagrange time delay estimation auto-regression (MLTDEAR)-based interpolator is used to provide an estimate of noise variance to a standard Wiener filter. A variety of images are captured and the performance of the filter is shown to surpass the conventional noise filters. As all the information required for processing is extracted from a single image, this method is not constrained by image registration requirements and thus can be applied in real-time in cases where specimen drift is presented in the SEM image.
A number of techniques have been proposed during the last three decades for noise variance and signal-to-noise ratio (SNR) estimation in digital images. While some methods have shown reliability and accuracy in SNR and noise variance estimations, other methods are dependent on the nature of the images and perform well on a limited number of image types. In this article, we prove the accuracy and the efficiency of the image noise cross-correlation estimation model, vs. other existing estimators, when applied to different types of scanning electron microscope images.
This article focuses on the localization of burn mark in MOSFET and the scanning electron microscope (SEM) inspection on the defect location. When a suspect abnormal topography is shown on the die surface, further methods to pin-point the defect location is necessary. Fault localization analysis becomes important because an abnormal spot on the chip surface may and may not have a defect underneath it. The chip surface topography can change due to the catastrophic damage occurred at layers under the chip surface, but it could also be due to inconsistency during metal deposition in the wafer fabrication process. Two localization techniques, liquid crystal thermography and emission microscopy, were performed to confirm that the abnormal topography spot is the actual defect location. The tiny burn mark was surfaced by performing a surface decoration at the defect location using hot hydrochloric acid. SEM imaging, which has the high magnification and three-dimensional capabilities, was used to capture the images of the burn mark.
A new and robust parameter estimation technique, named image noise cross-correlation, is proposed to predict the signal-to-noise ratio (SNR) of scanning electron microscope images. The results of SNR and variance estimation values are tested and compared with nearest neighborhood and first-order interpolation. Overall, the proposed method is best as its estimations for the noise-free peak and SNR are most consistent and accurate to within a certain acceptable degree, compared with the others.
This paper presents analysis of thin plates with holes within the context of XFEM. New integration techniques are developed for exact geometrical representation of the holes. Numerical and exact integration techniques are presented, with some limitations for the exact integration technique. Simulation results show that the proposed techniques help to reduce the solution error, due to the exact geometrical representation of the holes and utilization of appropriate quadrature rules. Discussion on minimum order of integration order needed to achieve good accuracy and convergence for the techniques presented in this work is also included.
A new technique based on cubic spline interpolation with Savitzky-Golay smoothing using weighted least squares error filter is enhanced for scanning electron microscope (SEM) images. A diversity of sample images is captured and the performance is found to be better when compared with the moving average and the standard median filters, with respect to eliminating noise. This technique can be implemented efficiently on real-time SEM images, with all mandatory data for processing obtained from a single image. Noise in images, and particularly in SEM images, are undesirable. A new noise reduction technique, based on cubic spline interpolation with Savitzky-Golay and weighted least squares error method, is developed. We apply the combined technique to single image signal-to-noise ratio estimation and noise reduction for SEM imaging system. This autocorrelation-based technique requires image details to be correlated over a few pixels, whereas the noise is assumed to be uncorrelated from pixel to pixel. The noise component is derived from the difference between the image autocorrelation at zero offset, and the estimation of the corresponding original autocorrelation. In the few test cases involving different images, the efficiency of the developed noise reduction filter is proved to be significantly better than those obtained from the other methods. Noise can be reduced efficiently with appropriate choice of scan rate from real-time SEM images, without generating corruption or increasing scanning time.
A new technique based on cubic spline interpolation with Savitzky-Golay noise reduction filtering is designed to estimate signal-to-noise ratio of scanning electron microscopy (SEM) images. This approach is found to present better result when compared with two existing techniques: nearest neighbourhood and first-order interpolation. When applied to evaluate the quality of SEM images, noise can be eliminated efficiently with optimal choice of scan rate from real-time SEM images, without generating corruption or increasing scanning time.
A new technique for estimation of signal-to-noise ratio in scanning electron microscope images is reported. The method is based on the image noise cross-correlation estimation model recently developed. We derive the basic performance limits on a single image signal-to-noise ratio estimation using the Cramer-Rao inequality. The results are compared with those from existing estimation methods including the nearest neighbourhood (the simple method), the first order linear interpolator, and the autoregressive based estimator. The comparisons were made using several tests involving different images within the performance bounds. From the results obtained, the efficiency and accuracy of image noise cross-correlation estimation technique is considerably better than the other three methods.
A novel technique to quantify the signal-to-noise ratio (SNR) of magnetic resonance images is developed. The image SNR is quantified by estimating the amplitude of the signal spectrum using the autocorrelation function of just one single magnetic resonance image. To test the performance of the quantification, SNR measurement data are fitted to theoretically expected curves. It is shown that the technique can be implemented in a highly efficient way for the magnetic resonance imaging system.
An improvement to the previously proposed Canny optimization technique for scanning electron microscope image colorization is reported. The additional process is adaptive tuning, where colour tuning is performed adaptively, based on comparing the original luminance values with calculated luminance values. The complete adaptive Canny optimization technique gives significantly better mechanical contrast on scanning electron microscope grey-scale images than do existing methods.
Interpolation techniques that are used for image magnification to obtain more useful details of the surface such as morphology and mechanical contrast usually rely on the signal information distributed around edges and areas of sharp changes and these signal information can also be used to predict missing details from the sample image. However, many of these interpolation methods tend to smooth or blur out image details around the edges. In the present study, a Lagrange time delay estimation interpolator method is proposed and this method only requires a small filter order and has no noticeable estimation bias. Comparing results with the original scanning electron microscope magnification and results of various other interpolation methods, the Lagrange time delay estimation interpolator is found to be more efficient, more robust and easier to execute.
A new and robust parameter estimation technique, named Gaussian-Taylor interpolation, is proposed to predict the signal-to-noise ratio (SNR) of scanning electron microscope images. The results of SNR and variance estimation values are tested and compared with piecewise cubic Hermite interpolation, quadratic spline interpolation, autoregressive moving average and moving average. Overall, the proposed estimations for noise-free peak and SNR are most consistent and accurate to within a certain acceptable degree compared with the others.
A proposal to assess the quality of scanning electron microscope images using mixed Lagrange time delay estimation technique is presented. With optimal scanning electron microscope scan rate information, online images can be quantified and improved. The online quality assessment technique is embedded onto a scanning electron microscope frame grabber card for real-time image processing. Different images are captured using scanning electron microscope and a database is built to optimally choose filter parameters. An optimum choice of filter parameters is obtained. With the optimum choice of scan rate, noise can be removed from real-time scanning electron microscope images without causing any sample contamination or increasing scanning time.
The synovial fluid motion in an artificial hip joint is important in understanding the thermo-fluids effects that can affect the reliability of the joint, although it is difficult to be studied theoretically, as the modelling involves the viscous fluid interacting with a moving surface. A new analytical solution has been derived for the maximum induced fluid motion within a spherical gap with an oscillating lower surface and a stationary upper surface, assuming one-dimensional incompressible laminar Newtonian flow with constant properties, and using the Navier-Stokes equation. The resulting time-dependent motion is analysed in terms of two dimensionless parameters R and β, which are functions of geometry, fluid properties and the oscillation rate. The model is then applied to the conditions of the synovial fluid enclosed in the artificial hip joint and it is found that the motion may be described by a simpler velocity variation, whereby laying the foundation to thermal studies in the joint.
An improvement to the previously proposed adaptive Canny optimization technique for scanning electron microscope image colorization is reported. The additional feature, called pseudo-mapping technique, is that the grayscale markings are temporarily mapped to a set of pre-defined pseudo-color map as a mean to instill color information for grayscale colors in chrominance channels. This allows the presence of grayscale markings to be identified; hence optimization colorization of grayscale colors is made possible. This additional feature enhances the flexibility of scanning electron microscope image colorization by providing wider range of possible color enhancement. Furthermore, the nature of this technique also allows users to adjust the luminance intensities of selected region from the original image within certain extent.
To reduce undesirable charging effects in scanning electron microscope images, Rayleigh contrast stretching is developed and employed. First, re-scaling is performed on the input image histograms with Rayleigh algorithm. Then, contrast stretching or contrast adjustment is implemented to improve the images while reducing the contrast charging artifacts. This technique has been compared to some existing histogram equalization (HE) extension techniques: recursive sub-image HE, contrast stretching dynamic HE, multipeak HE and recursive mean separate HE. Other post processing methods, such as wavelet approach, spatial filtering, and exponential contrast stretching, are compared as well. Overall, the proposed method produces better image compensation in reducing charging artifacts.