METHODS: We built two models, for ER+ (ModelER+) and ER- tumors (ModelER-), respectively, in 281,330 women (51% postmenopausal at recruitment) from the European Prospective Investigation into Cancer and Nutrition cohort. Discrimination (C-statistic) and calibration (the agreement between predicted and observed tumor risks) were assessed both internally and externally in 82,319 postmenopausal women from the Women's Health Initiative study. We performed decision curve analysis to compare ModelER+ and the Gail model (ModelGail) regarding their applicability in risk assessment for chemoprevention.
RESULTS: Parity, number of full-term pregnancies, age at first full-term pregnancy and body height were only associated with ER+ tumors. Menopausal status, age at menarche and at menopause, hormone replacement therapy, postmenopausal body mass index, and alcohol intake were homogeneously associated with ER+ and ER- tumors. Internal validation yielded a C-statistic of 0.64 for ModelER+ and 0.59 for ModelER-. External validation reduced the C-statistic of ModelER+ (0.59) and ModelGail (0.57). In external evaluation of calibration, ModelER+ outperformed the ModelGail: the former led to a 9% overestimation of the risk of ER+ tumors, while the latter yielded a 22% underestimation of the overall BC risk. Compared with the treat-all strategy, ModelER+ produced equal or higher net benefits irrespective of the benefit-to-harm ratio of chemoprevention, while ModelGail did not produce higher net benefits unless the benefit-to-harm ratio was below 50. The clinical applicability, i.e. the area defined by the net benefit curve and the treat-all and treat-none strategies, was 12.7 × 10- 6 for ModelER+ and 3.0 × 10- 6 for ModelGail.
CONCLUSIONS: Modeling heterogeneous epidemiological risk factors might yield little improvement in BC risk prediction. Nevertheless, a model specifically predictive of ER+ tumor risk could be more applicable than an omnibus model in risk assessment for chemoprevention.
METHODS: A nutrient-wide association study was conducted to systematically and comprehensively evaluate the associations between 92 foods or nutrients and risk of prostate cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). Cox proportional hazard regression models adjusted for total energy intake, smoking status, body mass index, physical activity, diabetes and education were used to estimate hazard ratios and 95% confidence intervals for standardized dietary intakes. As in genome-wide association studies, correction for multiple comparisons was applied using the false discovery rate (FDR
OBJECTIVE: We used a nutrient-wide association study approach to systematically test the association between dietary factors and invasive EOC risk while accounting for multiple hypothesis testing by using the false discovery rate and evaluated the findings in an independent cohort.
DESIGN: We assessed dietary intake amounts of 28 foods/food groups and 29 nutrients estimated by using dietary questionnaires in the EPIC (European Prospective Investigation into Cancer and Nutrition) study (n = 1095 cases). We selected 4 foods/nutrients that were statistically significantly associated with EOC risk when comparing the extreme quartiles of intake in the EPIC study (false discovery rate = 0.43) and evaluated these factors in the NLCS (Netherlands Cohort Study; n = 383 cases). Cox regression models were used to estimate HRs and 95% CIs.
RESULTS: None of the 4 dietary factors that were associated with EOC risk in the EPIC study (cholesterol, polyunsaturated and saturated fat, and bananas) were statistically significantly associated with EOC risk in the NLCS; however, in meta-analysis of the EPIC study and the NLCS, we observed a higher risk of EOC with a high than with a low intake of saturated fat (quartile 4 compared with quartile 1; overall HR: 1.21; 95% CI: 1.04, 1.41).
CONCLUSION: In the meta-analysis of both studies, there was a higher risk of EOC with a high than with a low intake of saturated fat.
METHODS: Using data from 272,098 women participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) study, we assessed dietary intake of 92 foods and nutrients estimated by dietary questionnaires. Cox regression was used to quantify the association between each food/nutrient and risk of breast cancer. A false discovery rate (FDR) of 0.05 was used to select the set of foods and nutrients to be replicated in the independent Netherlands Cohort Study (NLCS).
RESULTS: Six foods and nutrients were identified as associated with risk of breast cancer in the EPIC study (10,979 cases). Higher intake of alcohol overall was associated with a higher risk of breast cancer (hazard ratio (HR) for a 1 SD increment in intake = 1.05, 95% CI 1.03-1.07), as was beer/cider intake and wine intake (HRs per 1 SD increment = 1.05, 95% CI 1.03-1.06 and 1.04, 95% CI 1.02-1.06, respectively), whereas higher intakes of fibre, apple/pear, and carbohydrates were associated with a lower risk of breast cancer (HRs per 1 SD increment = 0.96, 95% CI 0.94-0.98; 0.96, 95% CI 0.94-0.99; and 0.96, 95% CI 0.95-0.98, respectively). When evaluated in the NLCS (2368 cases), estimates for each of these foods and nutrients were similar in magnitude and direction, with the exception of beer/cider intake, which was not associated with risk in the NLCS.
CONCLUSIONS: Our findings confirm a positive association of alcohol consumption and suggest an inverse association of dietary fibre and possibly fruit intake with breast cancer risk.