Displaying all 8 publications

Abstract:
Sort:
  1. Young KI, Buenemann M, Vasilakis N, Perera D, Hanley KA
    Ecosphere, 2021 Apr;12(4).
    PMID: 33996190 DOI: 10.1002/ecs2.3463
    Deforestation precipitates spillover of enzootic, vector-borne viruses into humans, but specific mechanisms for this effect have rarely been investigated. Expansion of oil palm cultivation is a major driver of deforestation. Here, we demonstrate that mosquito abundance decreased over ten stepwise distances from interior forest into conterminous palm plantations in Borneo. Diversity in interior plantation narrowed to one species, Aedes albopictus, a potential bridge vector for spillover of multiple viruses. A. albopictus was equally abundant across all distances in forests, forest-plantation edge, and plantations, while A. niveus, a known vector of sylvatic dengue virus, was found only in forests. A. albopictus collections were significantly female-biased in plantation but not in edge or forest. Our data reveal that the likelihood of encountering any mosquito is greater in interior forest and edge than plantation, while the likelihood of encountering A. albopictus is equivalent across the gradient sampled from interior plantation to interior forest.
  2. Sadeghi M, Popov V, Guzman H, Phan TG, Vasilakis N, Tesh R, et al.
    Virus Res, 2017 10 15;242:49-57.
    PMID: 28855097 DOI: 10.1016/j.virusres.2017.08.012
    Eleven viral isolates derived mostly in albopictus C6/36 cells from mosquito pools collected in Southeast Asia and the Americas between 1966 and 2014 contained particles with electron microscopy morphology typical of reoviruses. Metagenomics analysis yielded the near complete genomes of three novel reoviruses, Big Cypress orbivirus, Ninarumi virus, and High Island virus and a new tetravirus, Sarawak virus. Strains of previously characterized Sathuvarachi, Yunnan, Banna and Parry's Lagoon viruses (Reoviridae), Bontang virus (Mesoniviridae), and Culex theileri flavivirus (Flaviviridae) were also characterized. The availability of these mosquito virus genomes will facilitate their detection by metagenomics or PCR to better determine their geographic range, extent of host tropism, and possible association with arthropod or vertebrate disease.
  3. Zemla A, Kostova T, Gorchakov R, Volkova E, Beasley DW, Cardosa J, et al.
    Bioinform Biol Insights, 2014 Jan 8;8:1-16.
    PMID: 24453480 DOI: 10.4137/BBI.S13076
    A computational approach for identification and assessment of genomic sequence variability (GeneSV) is described. For a given nucleotide sequence, GeneSV collects information about the permissible nucleotide variability (changes that potentially preserve function) observed in corresponding regions in genomic sequences, and combines it with conservation/variability results from protein sequence and structure-based analyses of evaluated protein coding regions. GeneSV was used to predict effects (functional vs. non-functional) of 37 amino acid substitutions on the NS5 polymerase (RdRp) of dengue virus type 2 (DENV-2), 36 of which are not observed in any publicly available DENV-2 sequence. 32 novel mutants with single amino acid substitutions in the RdRp were generated using a DENV-2 reverse genetics system. In 81% (26 of 32) of predictions tested, GeneSV correctly predicted viability of introduced mutations. In 4 of 5 (80%) mutants with double amino acid substitutions proximal in structure to one another GeneSV was also correct in its predictions. Predictive capabilities of the developed system were illustrated on dengue RNA virus, but described in the manuscript a general approach to characterize real or theoretically possible variations in genomic and protein sequences can be applied to any organism.
  4. Walker PJ, Widen SG, Firth C, Blasdell KR, Wood TG, Travassos da Rosa AP, et al.
    Am J Trop Med Hyg, 2015 Nov;93(5):1041-51.
    PMID: 26324724 DOI: 10.4269/ajtmh.15-0344
    The genus Nairovirus of arthropod-borne bunyaviruses includes the important emerging human pathogen, Crimean-Congo hemorrhagic fever virus (CCHFV), as well as Nairobi sheep disease virus and many other poorly described viruses isolated from mammals, birds, and ticks. Here, we report genome sequence analysis of six nairoviruses: Thiafora virus (TFAV) that was isolated from a shrew in Senegal; Yogue (YOGV), Kasokero (KKOV), and Gossas (GOSV) viruses isolated from bats in Senegal and Uganda; Issyk-Kul virus (IKV) isolated from bats in Kyrgyzstan; and Keterah virus (KTRV) isolated from ticks infesting a bat in Malaysia. The S, M, and L genome segments of each virus were found to encode proteins corresponding to the nucleoprotein, polyglycoprotein, and polymerase protein of CCHFV. However, as observed in Leopards Hill virus (LPHV) and Erve virus (ERVV), polyglycoproteins encoded in the M segment lack sequences encoding the double-membrane-spanning CCHFV NSm protein. Amino acid sequence identities, complement-fixation tests, and phylogenetic analysis indicated that these viruses cluster into three groups comprising KKOV, YOGV, and LPHV from bats of the suborder Yingochiroptera; KTRV, IKV, and GOSV from bats of the suborder Yangochiroptera; and TFAV and ERVV from shrews (Soricomorpha: Soricidae). This reflects clade-specific host and vector associations that extend across the genus.
  5. Young KI, Mundis S, Widen SG, Wood TG, Tesh RB, Cardosa J, et al.
    Parasit Vectors, 2017 Aug 31;10(1):406.
    PMID: 28859676 DOI: 10.1186/s13071-017-2341-z
    BACKGROUND: Mosquito-borne dengue virus (DENV) is maintained in a sylvatic, enzootic cycle of transmission between canopy-dwelling non-human primates and Aedes mosquitoes in Borneo. Sylvatic DENV can spill over into humans living in proximity to forest foci of transmission, in some cases resulting in severe dengue disease. The most likely vectors of such spillover (bridge vectors) in Borneo are Ae. albopictus and Ae. niveus. Borneo is currently experiencing extensive forest clearance. To gauge the effect of this change in forest cover on the likelihood of sylvatic DENV spillover, it is first necessary to characterize the distribution of bridge vectors in different land cover types. In the current study, we hypothesized that Ae. niveus and Ae. albopictus would show significantly different distributions in different land cover types; specifically, we predicted that Ae. niveus would be most abundant in forests whereas Ae. albopictus would have a more even distribution in the landscape.

    RESULTS: Mosquitoes were collected from a total of 15 sites using gravid traps and a backpack aspirator around Kampong Puruh Karu, Sarawak, Malaysian Borneo, where sylvatic DENV spillover has been documented. A total of 2447 mosquitoes comprising 10 genera and 4 species of Aedes, were collected over the three years, 2013, 2014 and 2016, in the three major land cover types in the area, homestead, agriculture and forest. Mosquitoes were identified morphologically, pooled by species and gender, homogenized, and subject to DNA barcoding of each Aedes species and to arbovirus screening. As predicted, Ae. niveus was found almost exclusively in forests whereas Ae. albopictus was collected in all land cover types. Aedes albopictus was significantly (P = 0.04) more abundant in agricultural fields than forests. Sylvatic DENV was not detected in any Aedes mosquito pools, however genomes of 14 viruses were detected using next generation sequencing.

    CONCLUSIONS: Land cover type affects the abundance and distribution of the most likely bridge vectors of sylvatic DENV in Malaysia Borneo. Conversion of forests to agriculture will likely decrease the range and abundance of Ae. niveus but enhance the abundance of Ae. albopictus.

  6. Vasilakis N, Tesh RB, Popov VL, Widen SG, Wood TG, Forrester NL, et al.
    Viruses, 2019 05 23;11(5).
    PMID: 31126128 DOI: 10.3390/v11050471
    In recent years, it has become evident that a generational gap has developed in the community of arbovirus research. This apparent gap is due to the dis-investment of training for the next generation of arbovirologists, which threatens to derail the rich history of virus discovery, field epidemiology, and understanding of the richness of diversity that surrounds us. On the other hand, new technologies have resulted in an explosion of virus discovery that is constantly redefining the virosphere and the evolutionary relationships between viruses. This paradox presents new challenges that may have immediate and disastrous consequences for public health when yet to be discovered arboviruses emerge. In this review we endeavor to bridge this gap by providing a historical context for the work being conducted today and provide continuity between the generations. To this end, we will provide a narrative of the thrill of scientific discovery and excitement and the challenges lying ahead.
  7. Guzman H, Contreras-Gutierrez MA, Travassos da Rosa APA, Nunes MRT, Cardoso JF, Popov VL, et al.
    Am J Trop Med Hyg, 2018 02;98(2):410-419.
    PMID: 29016330 DOI: 10.4269/ajtmh.17-0350
    Three novel insect-specific flaviviruses, isolated from mosquitoes collected in Peru, Malaysia (Sarawak), and the United States, are characterized. The new viruses, designated La Tina, Kampung Karu, and Long Pine Key, respectively, are antigenically and phylogenetically more similar to the mosquito-borne flavivirus pathogens, than to the classical insect-specific viruses like cell fusing agent and Culex flavivirus. The potential implications of this relationship and the possible uses of these and other arbovirus-related insect-specific flaviviruses are reviewed.
  8. Chen RE, Smith BK, Errico JM, Gordon DN, Winkler ES, VanBlargan LA, et al.
    Cell Host Microbe, 2021 Nov 10;29(11):1634-1648.e5.
    PMID: 34610295 DOI: 10.1016/j.chom.2021.09.006
    Although divergent dengue viruses (DENVs) have been isolated in insects, nonhuman primates, and humans, their relationships to the four canonical serotypes (DENV 1-4) are poorly understood. One virus isolated from a dengue patient, DKE-121, falls between genotype and serotype levels of sequence divergence to DENV-4. To examine its antigenic relationship to DENV-4, we assessed serum neutralizing and protective activity. Whereas DENV-4-immune mouse sera neutralize DKE-121 infection, DKE-121-immune sera inhibit DENV-4 less efficiently. Passive transfer of DENV-4 or DKE-121-immune sera protects mice against homologous, but not heterologous, DENV-4 or DKE-121 challenge. Antigenic cartography suggests that DENV-4 and DKE-121 are related but antigenically distinct. However, DENV-4 vaccination confers protection against DKE-121 in nonhuman primates, and serum from humans immunized with a tetravalent vaccine neutralize DENV-4 and DKE-121 infection equivalently. As divergent DENV strains, such as DKE-121, may meet criteria for serotype distinction, monitoring their capacity to impact dengue disease and vaccine efficacy appears warranted.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links