Displaying all 3 publications

Abstract:
Sort:
  1. Chan WP, Veksha A, Lei J, Oh WD, Dou X, Giannis A, et al.
    J Environ Manage, 2019 Mar 15;234:65-74.
    PMID: 30616190 DOI: 10.1016/j.jenvman.2018.12.107
    A novel, cost-effective and real-time process monitoring and control system was developed to maintain stable operation of waste-to-energy gasification process. It comprised a feedback loop control that utilized the differential temperatures of the oxidation and reduction zones in the gasifier to determine the regional heat-flow (endothermic or exothermic), to assess the availability of oxidizing agent (for instance, air or O2) at the char bed and to calculate the fuel feeding rate. Based on the correlations developed, the air-to-fuel ratio or the equivalence air ratio (ER) for air gasification could be instantaneously adjusted to maintain stable operation of the gasifier. This study demonstrated a simplification of complex reaction dynamics in the gasification process to differential temperature profiling of the gasifier. The monitoring and control system was tested for more than 70 h of continuous operation in a downdraft fixed-bed gasifier with refuse-derived fuel (RDF) prepared from municipal solid wastes (MSW). With the system, fuel feeding rate could be adjusted accurately to stabilize the operating temperature and ER in the gasifier and generate syngas with consistent properties. Significant reductions in the fluctuations of temperature profiles at oxidation and reduction zones (from higher than 100 °C to lower than 50 °C), differential temperatures (from ±200 to ±50 °C) in gasifier and the flow rate (from 16 ± 6.5 to 12 ± 1.8 L/min), composition of main gas components, LHV (from 6.2 ± 3.1 to 5.7 ± 1.6 MJ/Nm3) and tar content (from 8.0 ± 9.7 to 7.5 ± 4.2 g/Nm3) of syngas were demonstrated. The developed gasifier monitoring and control system is adaptable to various types (updraft, downdraft, and fluidized-bed) and scales (lab, pilot, large scale) of gasifiers with different types of fuel.
  2. Gasim MF, Veksha A, Lisak G, Low SC, Hamidon TS, Hussin MH, et al.
    J Colloid Interface Sci, 2023 Mar 15;634:586-600.
    PMID: 36549207 DOI: 10.1016/j.jcis.2022.12.072
    Herein, five N, S-co-doped carbocatalysts were prepared from different carbonaceous precursors, namely sawdust (SD), biochar (BC), carbon-nanotubes (CNTs), graphite (GP), and graphene oxide (GO) and compared. Generally, as the graphitization degree increased, the extent of N and S doping decreased, graphitic N configuration is preferred, and S configuration is unaltered. As peroxymonosulfate (PMS) activator for ciprofloxacin (CIP) removal, the catalytic performance was in order: NS-CNTs (0.037 min-1) > NS-BC (0.032 min-1) > NS-rGO (0.024 min-1) > NS-SD (0.010 min-1) > NS-GP (0.006 min-1), with the carbonaceous properties, rather than the heteroatoms content and textural properties, being the major factor affecting the catalytic performance. NS-CNTs was found to have the supreme catalytic activity due to its remarkable conductivity (3.38 S m-1) and defective sites (ID/IG = 1.28) with high anti-interference effect against organic and inorganic matter and varying water matrixes. The PMS activation pathway was dominated by singlet oxygen (1O2) generation and electron transfer regime between CIP and PMS activated complexes. The CIP degradation intermediates were identified, and a degradation pathway is proposed. Overall, this study provides a better understanding of the importance of selecting a suitable carbonaceous platform for heteroatoms doping to produce superior PMS activator for antibiotics decontamination.
  3. Veksha A, Yin K, Moo JGS, Oh WD, Ahamed A, Chen WQ, et al.
    J Hazard Mater, 2020 04 05;387:121256.
    PMID: 31951979 DOI: 10.1016/j.jhazmat.2019.121256
    Flexible plastic packaging waste causes serious environmental issues due to challenges in recycling. This study investigated the conversion of flexible plastic packaging waste with 11.8 and 27.5 wt.% polyethylene terephthalate (PET) (denoted as PET-12 and PET-28, respectively) into oil and multi-walled carbon nanotubes (MWCNTs). The mixtures were initially pyrolyzed and the produced volatiles were processed over 9.0 wt.% Fe2O3 supported on ZSM-5 (400 °C) to remove oxygenated hydrocarbons (catalytic cracking of terephthalic and benzoic acids) that deteriorate oil quality. The contents of oxygenated hydrocarbons were decreased in oil from 4.6 and 9.4 wt.% per mass of PET-12 and PET-28, respectively, to undetectable levels. After catalytic cracking, the oil samples had similar contents of gasoline, diesel and heavy oil/wax fractions. The non-condensable gas was converted into MWCNTs over 0.9 wt.% Ni supported on CaCO3 (700 °C). The type of plastic packaging influenced the yields (2.4 and 1.5 wt.% per mass of PET-12 and PET-28, respectively) and the properties of MWCNTs due to the differences in gas composition. Regarding the electrocatalytic application, both MWCNTs from PET-12 and PET-28 outperformed commercial MWCNTs and Pt-based electrodes during oxygen evolution reaction, suggesting that MWCNTs from flexible plastic packaging can potentially replace conventional electrode materials.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links