Camera attribution plays an important role in digital image forensics by providing the evidence and distinguishing characteristics of the origin of the digital image. It allows the forensic analyser to find the possible source camera which captured the image under investigation. However, in real-world applications, these approaches have faced many challenges due to the large set of multimedia data publicly available through photo sharing and social network sites, captured with uncontrolled conditions and undergone variety of hardware and software post-processing operations. Moreover, the legal system only accepts the forensic analysis of the digital image evidence if the applied camera attribution techniques are unbiased, reliable, nondestructive and widely accepted by the experts in the field. The aim of this paper is to investigate the evolutionary trend of image source camera attribution approaches from fundamental to practice, in particular, with the application of image processing and data mining techniques. Extracting implicit knowledge from images using intrinsic image artifacts for source camera attribution requires a structured image mining process. In this paper, we attempt to provide an introductory tutorial on the image processing pipeline, to determine the general classification of the features corresponding to different components for source camera attribution. The article also reviews techniques of the source camera attribution more comprehensively in the domain of the image forensics in conjunction with the presentation of classifying ongoing developments within the specified area. The classification of the existing source camera attribution approaches is presented based on the specific parameters, such as colour image processing pipeline, hardware- and software-related artifacts and the methods to extract such artifacts. The more recent source camera attribution approaches, which have not yet gained sufficient attention among image forensics researchers, are also critically analysed and further categorised into four different classes, namely, optical aberrations based, sensor camera fingerprints based, processing statistics based and processing regularities based, to present a classification. Furthermore, this paper aims to investigate the challenging problems, and the proposed strategies of such schemes based on the suggested taxonomy to plot an evolution of the source camera attribution approaches with respect to the subjective optimisation criteria over the last decade. The optimisation criteria were determined based on the strategies proposed to increase the detection accuracy, robustness and computational efficiency of source camera brand, model or device attribution.
Audio forgery is any act of tampering, illegal copy and fake quality in the audio in a criminal way. In the last decade, there has been increasing attention to the audio forgery detection due to a significant increase in the number of forge in different type of audio. There are a number of methods for forgery detection, which electric network frequency (ENF) is one of the powerful methods in this area for forgery detection in terms of accuracy. In spite of suitable accuracy of ENF in a majority of plug-in powered devices, the weak accuracy of ENF in audio forgery detection for battery-powered devices, especially in laptop and mobile phone, can be consider as one of the main obstacles of the ENF. To solve the ENF problem in terms of accuracy in battery-powered devices, a combination method of ENF and phase feature is proposed. From experiment conducted, ENF alone give 50% and 60% accuracy for forgery detection in mobile phone and laptop respectively, while the proposed method shows 88% and 92% accuracy respectively, for forgery detection in battery-powered devices. The results lead to higher accuracy for forgery detection with the combination of ENF and phase feature.
Soft set theory is a mathematical approach that provides solution for dealing with uncertain data. As a standard soft set, it can be represented as a Boolean-valued information system, and hence it has been used in hundreds of useful applications. Meanwhile, these applications become worthless if the Boolean information system contains missing data due to error, security or mishandling. Few researches exist that focused on handling partially incomplete soft set and none of them has high accuracy rate in prediction performance of handling missing data. It is shown that the data filling approach for incomplete soft set (DFIS) has the best performance among all previous approaches. However, in reviewing DFIS, accuracy is still its main problem. In this paper, we propose an alternative data filling approach for prediction of missing data in soft sets, namely ADFIS. The novelty of ADFIS is that, unlike the previous approach that used probability, we focus more on reliability of association among parameters in soft set. Experimental results on small, 04 UCI benchmark data and causality workbench lung cancer (LUCAP2) data shows that ADFIS performs better accuracy as compared to DFIS.
Worldwide, the burden of cancer is drastically increasing over the past few years. Among all types of cancers in women, breast cancer (BrC) is the main cause of unnatural deaths. For early diagnosis, histopathology (Hp) imaging is a gold standard for positive and detailed (at tissue level) diagnosis of breast tumor (BrT) compared to mammogram images. A large number of studies used BrT Hp images to solve binary or multiclassification problems using high computational resources. However, classification models' performance may be compromised due to the high correlation among various types of BrT in Hp images, which raises the misclassification rate. Thus, this paper aims to develop a tree-based BrT multiclassification model via deep learning (DL) to extract discriminative features to solve the multiclassification problem with better performance using less computational resources. The main contributions of this work are to create an ensemble, tree-based DL model that is pre-trained on the BreakHis dataset, and implementation of a misclassification reduction algorithm. The ensemble, tree-based DL model, extracts discriminative BrT features from Hp images. The target dataset (i.e., Bioimaging challenge 2015 breast histology) is small in size; thus, to avoid overfitting of the proposed model, pretraining is performed on the BreakHis dataset. Whereas, misclassification reduction algorithm is implemented to enhance the performance of the classification model. The experimental results show that the proposed model outperformed the existing state-of-the-art baseline studies. The achieved classification accuracy is ranging from 87.50 % to 100 % for four subtypes of BrT. Thus, the proposed model can assist doctors as the second opinion in any healthcare centre.
Network forensics enables investigation and identification of network attacks through the retrieved digital content. The proliferation of smartphones and the cost-effective universal data access through cloud has made Mobile Cloud Computing (MCC) a congenital target for network attacks. However, confines in carrying out forensics in MCC is interrelated with the autonomous cloud hosting companies and their policies for restricted access to the digital content in the back-end cloud platforms. It implies that existing Network Forensic Frameworks (NFFs) have limited impact in the MCC paradigm. To this end, we qualitatively analyze the adaptability of existing NFFs when applied to the MCC. Explicitly, the fundamental mechanisms of NFFs are highlighted and then analyzed using the most relevant parameters. A classification is proposed to help understand the anatomy of existing NFFs. Subsequently, a comparison is given that explores the functional similarities and deviations among NFFs. The paper concludes by discussing research challenges for progressive network forensics in MCC.
Intelligent Transportation Systems rely on understanding, predicting and affecting the interactions between vehicles. The goal of this paper is to choose a small subset from the larger set so that the resulting regression model is simple, yet have good predictive ability for Vehicle agent speed relative to Vehicle intruder. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data resulting from these measurements. The ANFIS process for variable selection was implemented in order to detect the predominant variables affecting the prediction of agent speed relative to intruder. This process includes several ways to discover a subset of the total set of recorded parameters, showing good predictive capability. The ANFIS network was used to perform a variable search. Then, it was used to determine how 9 parameters (Intruder Front sensors active (boolean), Intruder Rear sensors active (boolean), Agent Front sensors active (boolean), Agent Rear sensors active (boolean), RSSI signal intensity/strength (integer), Elapsed time (in seconds), Distance between Agent and Intruder (m), Angle of Agent relative to Intruder (angle between vehicles °), Altitude difference between Agent and Intruder (m)) influence prediction of agent speed relative to intruder. The results indicated that distance between Vehicle agent and Vehicle intruder (m) and angle of Vehicle agent relative to Vehicle Intruder (angle between vehicles °) is the most influential parameters to Vehicle agent speed relative to Vehicle intruder.
Taking into consideration that the prior CMF detection methods rely on several fixed threshold values in the filtering process, we propose an efficient CMF detection method with an automatic threshold selection, named as CMF-iteMS. The CMF-iteMS recommends a PatchMatch-based CMF detection method that adapts Fourier-Mellin Transform (FMT) as the feature extraction technique while a new automatic threshold selection based on iterative means of regions size (iteMS) procedure is introduced to have flexibility in changing the threshold value for various characteristics (quality, sizes, and attacks) in each input image. To ensure the reliability of the proposed CMF-iteMS, the method is compared with four state-of-the-art CMF detection methods based on Scale Invariant Feature Transform (SIFT), patch matching, multi-scale analysis and symmetry techniques using three available datasets that cover the variety of characteristics in CMF images. The results show that the F-score of the CMF-iteMS outperformed existing CMF detection methods by exceeding an average of 90% F-score values for image-level evaluation and 82% of F-score value for pixel-level evaluation for all datasets in original size. As special attention is given to the image resizing attack, the method is able to maintain the highest performance even if the images in the datasets are resized to 0.25 parameter.
Vehicular ad hoc networks (VANETs) are considered an emerging technology in the industrial and educational fields. This technology is essential in the deployment of the intelligent transportation system, which is targeted to improve safety and efficiency of traffic. The implementation of VANETs can be effectively executed by transmitting data among vehicles with the use of multiple hops. However, the intrinsic characteristics of VANETs, such as its dynamic network topology and intermittent connectivity, limit data delivery. One particular challenge of this network is the possibility that the contributing node may only remain in the network for a limited time. Hence, to prevent data loss from that node, the information must reach the destination node via multi-hop routing techniques. An appropriate, efficient, and stable routing algorithm must be developed for various VANET applications to address the issues of dynamic topology and intermittent connectivity. Therefore, this paper proposes a novel routing algorithm called efficient and stable routing algorithm based on user mobility and node density (ESRA-MD). The proposed algorithm can adapt to significant changes that may occur in the urban vehicular environment. This algorithm works by selecting an optimal route on the basis of hop count and link duration for delivering data from source to destination, thereby satisfying various quality of service considerations. The validity of the proposed algorithm is investigated by its comparison with ARP-QD protocol, which works on the mechanism of optimal route finding in VANETs in urban environments. Simulation results reveal that the proposed ESRA-MD algorithm shows remarkable improvement in terms of delivery ratio, delivery delay, and communication overhead.
Retinal image registration is important to assist diagnosis and monitor retinal diseases, such as diabetic retinopathy and glaucoma. However, registering retinal images for various registration applications requires the detection and distribution of feature points on the low-quality region that consists of vessels of varying contrast and sizes. A recent feature detector known as Saddle detects feature points on vessels that are poorly distributed and densely positioned on strong contrast vessels. Therefore, we propose a multiresolution difference of Gaussian pyramid with Saddle detector (D-Saddle) to detect feature points on the low-quality region that consists of vessels with varying contrast and sizes. D-Saddle is tested on Fundus Image Registration (FIRE) Dataset that consists of 134 retinal image pairs. Experimental results show that D-Saddle successfully registered 43% of retinal image pairs with average registration accuracy of 2.329 pixels while a lower success rate is observed in other four state-of-the-art retinal image registration methods GDB-ICP (28%), Harris-PIIFD (4%), H-M (16%), and Saddle (16%). Furthermore, the registration accuracy of D-Saddle has the weakest correlation (Spearman) with the intensity uniformity metric among all methods. Finally, the paired t-test shows that D-Saddle significantly improved the overall registration accuracy of the original Saddle.