Displaying all 9 publications

Abstract:
Sort:
  1. Wang MC, Zaydi AI, Lin WH, Lin JS, Liong MT, Wu JJ
    Probiotics Antimicrob Proteins, 2020 09;12(3):840-850.
    PMID: 31749128 DOI: 10.1007/s12602-019-09615-9
    The dairy products remain as the largest reservoir for isolation of probiotic microorganisms. While probiotics have been immensely reported to exert various health benefits, it is also a common notion that these health potentials are strain and host dependent, leading to the need of more human evidence based on specific strains, health targets, and populations. This randomized, single-blind, and placebo-controlled human study aimed to evaluate the potential benefits of putative probiotic strains isolated from kefir on gastrointestinal parameters in fifty-six healthy adults. The consumption of AB-kefir (Bifidobacterium longum, Lactobacillus acidophilus, L. fermentum, L. helveticus, L. paracasei, L. rhamnosus, and Streptococcus thermophiles; total 10 log CFU/sachet) daily for 3 week reduced symptoms of abdominal pain, bloating (P = 0.014), and appetite (P = 0.041) in male subjects as compared to the control. Gut microbiota distribution profiles were shifted upon consumption of AB-kefir compared to baseline, where the abundance of bifidobacteria was increased in male subjects and maintained upon cessation of AB-kefir consumption. The consumption of AB-kefir also increased gastrointestinal abundance of total anaerobes (P = 0.038) and total bacterial (P = 0.049) in female subjects compared to the control after 3 weeks. Our results indicated that AB-kefir could potentially be developed as a natural strategy to improve gastrointestinal functions in adults.
  2. Wang MC, Freaney PM, Perak AM, Greenland P, Lloyd-Jones DM, Grobman WA, et al.
    J Am Heart Assoc, 2021 09 07;10(17):e020717.
    PMID: 34431359 DOI: 10.1161/JAHA.120.020717
    Background The prevalence of obesity in the population has increased in parallel with increasing rates of adverse pregnancy outcomes (APOs). Quantifying contemporary trends in prepregnancy obesity and associations with interrelated APOs (preterm birth, low birth weight, and pregnancy-associated hypertension) together and individually can inform prevention strategies to optimize cardiometabolic health in women and offspring. Methods and Results We performed a serial, cross-sectional study using National Center for Health Statistics birth certificate data including women aged 15 to 44 years with live singleton births between 2013 and 2018, stratified by race/ethnicity (non-Hispanic White, non-Hispanic Black, Hispanic, and non-Hispanic Asian). We quantified the annual prevalence of prepregnancy obesity (body mass index ≥30.0 kg/m2; body mass index ≥27.5 kg/m2 if non-Hispanic Asian). We then estimated adjusted associations using multivariable logistic regression (odds ratios and population attributable fractions) for obesity-related APOs compared with normal body mass index (18.5-24.9 kg/m2; 18.5-22.9 kg/m2 if non-Hispanic Asian). Among 20 139 891 women, the prevalence of prepregnancy obesity increased between 2013 and 2018: non-Hispanic White (21.6%-24.8%), non-Hispanic Black (32.5%-36.2%), Hispanic (26.0%-30.5%), and non-Hispanic Asian (15.3%-18.6%) women (P-trend 
  3. Wang MC, Freaney PM, Perak AM, Allen NB, Greenland P, Grobman WA, et al.
    Am J Prev Cardiol, 2021 Sep;7:100229.
    PMID: 34401862 DOI: 10.1016/j.ajpc.2021.100229
    Objective: To evaluate contemporary patterns in prepregnancy cardiovascular health (CVH) in the United States (US).

    Methods: We conducted a serial, cross-sectional study of National Center for Health Statistics Natality Data representing all live births in the US from 2011 to 2019. We assigned 1 point for each of four ideal prepregnancy metrics (nonsmoking and ideal body mass index [18.5-24.9 kg/m2] provided by maternal self-report, and absence of hypertension and diabetes ascertained by the healthcare professional at delivery) to construct a prepregnancy clinical CVH score ranging from 0 to 4. We described the distribution of prepregnancy CVH, overall and stratified by self-reported race/ethnicity, age, insurance status, and receipt of the Women, Infants, and Children program (WIC) for supplemental nutrition. We examined trends by calculating average annual percent changes (AAPCs) in optimal prepregnancy CVH (score of 4).

    Results: Of 31,643,982 live births analyzed between 2011 and 2019, 53.6% were to non-Hispanic White, 14.5% non-Hispanic Black, 23.3% Hispanic, and 6.6% non-Hispanic Asian women. The mean age (SD) was 28.5 (5.8) years. The prevalence (per 100 live births) of optimal prepregnancy CVH score of 4 declined from 42.1 to 37.7 from 2011 to 2019, with an AAPC (95% CI) of -1.4% per year (-1.3,-1.5). While the relative decline was observed across all race/ethnicity, insurance, and WIC subgroups, significant disparities persisted by race, insurance status, and receipt of WIC. In 2019, non-Hispanic Black women (28.7 per 100 live births), those on Medicaid (30.4), and those receiving WIC (29.1) had the lowest prevalence of optimal CVH.

    Conclusions: Overall, less than half of pregnant women had optimal prepregnancy CVH, and optimal prepregnancy CVH declined in each race/ethnicity, age, insurance, and WIC subgroup between 2011-2019 in the US. However, there were persistent disparities by race/ethnicity and socioeconomic status.

  4. Huang X, Lee K, Wang MC, Shah NS, Perak AM, Venkatesh KK, et al.
    JAMA Pediatr, 2024 Jan 01;178(1):65-72.
    PMID: 37955913 DOI: 10.1001/jamapediatrics.2023.4907
    IMPORTANCE: Preterm birth is a major contributor to neonatal morbidity and mortality, and considerable differences exist in rates of preterm birth among maternal racial and ethnic groups. Emerging evidence suggests pregnant individuals born outside the US have fewer obstetric complications than those born in the US, but the intersection of maternal nativity with race and ethnicity for preterm birth is not well studied.

    OBJECTIVE: To determine if there is an association between maternal nativity and preterm birth rates among nulliparous individuals, and whether that association differs by self-reported race and ethnicity of the pregnant individual.

    DESIGN, SETTING, AND PARTICIPANTS: This was a nationwide, cross-sectional study conducted using National Center for Health Statistics birth registration records for 8 590 988 nulliparous individuals aged 15 to 44 years with singleton live births in the US from 2014 to 2019. Data were analyzed from March to May 2022.

    EXPOSURES: Maternal nativity (non-US-born compared with US-born individuals as the reference, wherein US-born was defined as born within 1 of the 50 US states or Washington, DC) in the overall sample and stratified by self-reported ethnicity and race, including non-Hispanic Asian and disaggregated Asian subgroups (Asian Indian, Chinese, Filipino, Japanese, Korean, Pacific Islander, Vietnamese, and other Asian), non-Hispanic Black, Hispanic and disaggregated Hispanic subgroups (Cuban, Mexican, Puerto Rican, and other Hispanic), and non-Hispanic White.

    MAIN OUTCOMES AND MEASURES: The primary outcome was preterm birth (<37 weeks of gestation) and the secondary outcome was very preterm birth (<32 weeks of gestation).

    RESULTS: Of 8 590 988 pregnant individuals included (mean [SD] age at delivery, 28.3 [5.8] years in non-US-born individuals and 26.2 [5.7] years in US-born individuals; 159 497 [2.3%] US-born and 552 938 [31.2%] non-US-born individuals self-identified as Asian or Pacific Islander, 1 050 367 [15.4%] US-born and 178 898 [10.1%] non-US-born individuals were non-Hispanic Black, 1 100 337 [16.1%] US-born and 711 699 [40.2%] non-US-born individuals were of Hispanic origin, and 4 512 294 [66.1%] US-born and 328 205 [18.5%] non-US-born individuals were non-Hispanic White), age-standardized rates of preterm birth were lower among non-US-born individuals compared with US-born individuals (10.2%; 95% CI, 10.2-10.3 vs 10.9%; 95% CI, 10.9-11.0) with an adjusted odds ratio (aOR) of 0.90 (95% CI, 0.89-0.90). The greatest relative difference was observed among Japanese individuals (aOR, 0.69; 95% CI, 0.60-0.79) and non-Hispanic Black individuals (aOR, 0.74; 0.73-0.76) individuals. Non-US-born Pacific Islander individuals experienced higher preterm birth rates compared with US-born Pacific Islander individuals (aOR, 1.15; 95% CI, 1.04-1.27). Puerto Rican individuals born in Puerto Rico compared with those born in US states or Washington, DC, also had higher preterm birth rates (aOR, 1.07; 95% CI, 1.03-1.12).

    CONCLUSIONS AND RELEVANCE: Overall preterm birth rates were lower among non-US-born individuals compared with US-born individuals. However, there was substantial heterogeneity in preterm birth rates across maternal racial and ethnic groups, particularly among disaggregated Asian and Hispanic subgroups.

  5. Shah NS, Wang MC, Freaney PM, Perak AM, Carnethon MR, Kandula NR, et al.
    JAMA, 2021 08 17;326(7):660-669.
    PMID: 34402831 DOI: 10.1001/jama.2021.7217
    Importance: Gestational diabetes is associated with adverse maternal and offspring outcomes.

    Objective: To determine whether rates of gestational diabetes among individuals at first live birth changed from 2011 to 2019 and how these rates differ by race and ethnicity in the US.

    Design, Setting, and Participants: Serial cross-sectional analysis using National Center for Health Statistics data for 12 610 235 individuals aged 15 to 44 years with singleton first live births from 2011 to 2019 in the US.

    Exposures: Gestational diabetes data stratified by the following race and ethnicity groups: Hispanic/Latina (including Central and South American, Cuban, Mexican, and Puerto Rican); non-Hispanic Asian/Pacific Islander (including Asian Indian, Chinese, Filipina, Japanese, Korean, and Vietnamese); non-Hispanic Black; and non-Hispanic White.

    Main Outcomes and Measures: The primary outcomes were age-standardized rates of gestational diabetes (per 1000 live births) and respective mean annual percent change and rate ratios (RRs) of gestational diabetes in non-Hispanic Asian/Pacific Islander (overall and in subgroups), non-Hispanic Black, and Hispanic/Latina (overall and in subgroups) individuals relative to non-Hispanic White individuals (referent group).

    Results: Among the 12 610 235 included individuals (mean [SD] age, 26.3 [5.8] years), the overall age-standardized gestational diabetes rate significantly increased from 47.6 (95% CI, 47.1-48.0) to 63.5 (95% CI, 63.1-64.0) per 1000 live births from 2011 to 2019, a mean annual percent change of 3.7% (95% CI, 2.8%-4.6%) per year. Of the 12 610 235 participants, 21% were Hispanic/Latina (2019 gestational diabetes rate, 66.6 [95% CI, 65.6-67.7]; RR, 1.15 [95% CI, 1.13-1.18]), 8% were non-Hispanic Asian/Pacific Islander (2019 gestational diabetes rate, 102.7 [95% CI, 100.7-104.7]; RR, 1.78 [95% CI, 1.74-1.82]), 14% were non-Hispanic Black (2019 gestational diabetes rate, 55.7 [95% CI, 54.5-57.0]; RR, 0.97 [95% CI, 0.94-0.99]), and 56% were non-Hispanic White (2019 gestational diabetes rate, 57.7 [95% CI, 57.2-58.3]; referent group). Gestational diabetes rates were highest in Asian Indian participants (2019 gestational diabetes rate, 129.1 [95% CI, 100.7-104.7]; RR, 2.24 [95% CI, 2.15-2.33]). Among Hispanic/Latina participants, gestational diabetes rates were highest among Puerto Rican individuals (2019 gestational diabetes rate, 75.8 [95% CI, 71.8-79.9]; RR, 1.31 [95% CI, 1.24-1.39]). Gestational diabetes rates increased among all race and ethnicity subgroups and across all age groups.

    Conclusions and Relevance: Among individuals with a singleton first live birth in the US from 2011 to 2019, rates of gestational diabetes increased across all racial and ethnic subgroups. Differences in absolute gestational diabetes rates were observed across race and ethnicity subgroups.

  6. Freaney PM, Harrington K, Molsberry R, Perak AM, Wang MC, Grobman W, et al.
    J Am Heart Assoc, 2022 Jun 07;11(11):e025050.
    PMID: 35583146 DOI: 10.1161/JAHA.121.025050
    Background Adverse pregnancy outcomes (APOs) (hypertensive disorders of pregnancy [HDP], preterm delivery [PTD], or low birth weight [LBW]) are associated adverse maternal and offspring cardiovascular outcomes. Therefore, we sought to describe nationwide temporal trends in the burden of each APO (HDP, PTD, LBW) from 2007 to 2019 to inform strategies to optimize maternal and offspring health outcomes. Methods and Results We performed a serial cross-sectional analysis of APO subtypes (HDP, PTD, LBW) from 2007 to 2019. We included maternal data from all live births that occurred in the United States using the National Center for Health Statistics Natality Files. We quantified age-standardized and age-specific rates of APOs per 1000 live births and their respective mean annual percentage change. All analyses were stratified by self-report of maternal race and ethnicity. Among 51 685 525 live births included, 15% were to non-Hispanic Black individuals, 24% Hispanic individuals, and 6% Asian individuals. Between 2007 and 2019, age standardized HDP rates approximately doubled, from 38.4 (38.2-38.6) to 77.8 (77.5-78.1) per 1000 live births. A significant inflection point was observed in 2014, with an acceleration in the rate of increase of HDP from 2007 to 2014 (+4.1% per year [3.6-4.7]) to 2014 to 2019 (+9.1% per year [8.1-10.1]). Rates of PTD and LBW increased significantly when co-occurring in the same pregnancy with HDP. Absolute rates of APOs were higher in non-Hispanic Black individuals and in older age groups. However, similar relative increases were seen across all age,racial and ethnic groups. Conclusions In aggregate, APOs now complicate nearly 1 in 5 live births. Incidence of HDP has increased significantly between 2007 and 2019 and contributed to the reversal of favorable trends in PTD and LBW. Similar patterns were observed in all age groups, suggesting that increasing maternal age at pregnancy does not account for these trends. Black-White disparities persisted throughout the study period.
  7. Mehta PM, Wang MC, Cameron NA, Freaney PM, Perak AM, Shah NS, et al.
    Am J Prev Med, 2023 Dec;65(6):1184-1186.
    PMID: 37552145 DOI: 10.1016/j.amepre.2023.07.007
  8. Cameron NA, Freaney PM, Wang MC, Perak AM, Dolan BM, O'Brien MJ, et al.
    Circulation, 2022 Feb 15;145(7):549-551.
    PMID: 35157521 DOI: 10.1161/CIRCULATIONAHA.121.057107
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links