This paper describes chemical composition and antimicrobial activity of Cymbopogon nardus citronella essential oil against Edwardsiella spp. (n = 21), Vibrio spp. (n = 6), Aeromonas spp. (n = 2), Escherichia coli (n = 2), Salmonella spp. (n = 2), Flavobacterium spp. (n = 1), Pseudomonas spp. (n = 1) and Streptococcus spp. (n = 1) isolated from internal organs of aquatic animals. Due to the ban of antibiotics for aquaculture use, this study was carried out to evaluate the potential of citronella essential oil as alternative to commercial antibiotic use against systemic bacteria in cultured aquatic animals.
Bartonella elizabethae has been known to cause endocarditis and neuroretinitis in humans. The genomic features and virulence profiles of a B. elizabethae strain (designated as BeUM) isolated from the spleen of a wild rat in Kuala Lumpur, Malaysia are described in this study. The BeUM strain has a genome size of 1,932,479bp and GC content of 38.3%. There is a high degree of conservation between the genomes of strain BeUM with B. elizabethae type strains (ATCC 49927 and F9251) and a rat-borne strain, Re6043vi. Of 2137 gene clusters identified from B. elizabethae strains, 2064 (96.6%) are indicated as the core gene clusters. Comparative genome analysis of B. elizabethae strains reveals virulence genes which are known in other pathogenic Bartonella species, including VirB2-11, vbhB2-B11, VirD4, trw, vapA2-5, hbpA-E, bepA-F, bepH, badA/vomp/brp, ialB, omp43/89 and korA-B. A putative intact prophage has been identified in the strain BeUM, in addition to a 8kb pathogenicity island. The whole genome analysis supports the zoonotic potential of the rodent-borne B. elizabethae, and provides basis for future functional and pathogenicity studies of B. elizabethae.
Peperomia pellucida leaf extract was characterized for its anticancer, antimicrobial, antioxidant activities, and chemical compositions. Anticancer activity of P. pellucida leaf extract was determined through Colorimetric MTT (tetrazolium) assay against human breast adenocarcinoma (MCF-7) cell line and the antimicrobial property of the plant extract was revealed by using two-fold broth micro-dilution method against 10 bacterial isolates. Antioxidant activity of the plant extract was then characterized using α, α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging method and the chemical compositions were screened and identified using gas chromatography-mass spectrometry (GC-MS). The results of present study indicated that P. pellucida leaf extract possessed anticancer activities with half maximal inhibitory concentration (IC(50)) of 10.4 ± 0.06 µg/ml. The minimum inhibitory concentration (MIC) values were ranged from 31.25 to 125 mg/l in which the plant extract was found to inhibit the growth of Edwardsiella tarda, Escherichia coli, Flavobacterium sp., Pseudomonas aeruginosa and Vibrio cholerae at 31.25 mg/l; Klebsiella sp., Aeromonas hydrophila and Vibrio alginolyticus at 62.5 mg/l; and it was able to control the growth of Salmonella sp. and Vibrio parahaemolyticus at 125 mg/l. At the concentration of 0.625 ppt, the plant extract was found to inhibit 30% of DPPH, free radical. Phytol (37.88%) was the major compound in the plant extract followed by 2-Naphthalenol, decahydro- (26.20%), Hexadecanoic acid, methyl ester (18.31%) and 9,12-Octadecadienoic acid (Z,Z)-, methyl ester (17.61%). Findings from this study indicated that methanol extract of P. pellucida leaf possessed vast potential as medicinal drug especially in breast cancer treatment.
The aquaculture industry is geared toward intensification and successfully meets half of the world's demand for fish protein. The intensive farming system exposes the animal to the risk of disease outbreaks, which has economic consequences. Antibiotics are commonly used for the health management of aquaculture species. However, this has several drawbacks, including the increase in antibiotic resistance in pathogenic bacteria and the entry of antibiotic residues into the human food chain, which is a public health and environmental concern. The potential of probiotics, prebiotics, synbiotics, and medicinal herbs as alternatives to antibiotics for the health management of aquaculture species has been investigated in numerous studies. This review discusses the potential use of combinations of probiotics and medicinal herbs as prophylactic agents in aquaculture, along with the definitions, sources, and modes of action. The positive aspects of combining probiotics and medicinal herbs on growth performance, the immune system, and disease resistance of aquaculture species are also highlighted. Overall, this review addresses the potential of combinations of probiotics and medicinal herbs as feed additives for aquaculture species and the key role of these feed additives in improving the welfare of aquaculture species.
Aquaculture has intensified tremendously with the increasing demand for protein sources as the global population grows. However, this industry is plagued with major challenges such as poor growth performance, the lack of a proper environment, and immune system impairment, thus creating stress for the aquaculture species and risking disease outbreaks. Currently, prophylactics such as antibiotics, vaccines, prebiotics, probiotics, and phytobiotics are utilized to minimize the negative impacts of high-density farming. One of the promising prophylactic agents incorporated in fish feed is resveratrol, a commercial phytophenol derived via the methanol extraction method. Recent studies have revealed many beneficial effects of resveratrol in aquatic animals. Therefore, this review discusses and summarizes the roles of resveratrol in improving growth performance, flesh quality, immune system, antioxidant capacity, disease resistance, stress mitigation, and potential combination with other prophylactic agents for aquatic animals.
This study evaluated the effects of potato, wheat, rice, and corn starch on growth performance, blood parameters, digestive enzyme activity, antioxidative response, and gut microbiota of African catfish, Clarias gariepinus. A control diet (a commercial fish diet) and four different starch (potato, PO; wheat, WH; corn, CO; rice, RC) formulations were fed to African catfish with average weight of 10.5g (n = 30) for eight weeks. The experiment was conducted in triplicates. At the end of the feeding trial, the growth performance of African catfish fed with potato starch (PO) was significantly higher than other treatment groups. Furthermore, this group recorded significant and lowest feed conversion ratio (FCR) compared to other groups. Meanwhile, there were no significant differences in all tested hematological parameters and antioxidative response between the groups. Digestive enzyme activities in the fish intestines, including amylase, lipase, and protease, were significantly higher in African catfish fed with the PO diet. In addition, this group demonstrated substantially lower viscerosomatic index (VSI) and hepatosomatic index (HSI) than other groups, indicating that the fish has more meat on its body. The PO diet group also recorded significantly higher Akkermansia muciniphila, a good gut microbiota. Therefore, the PO diet potentially improves African catfish's growth performance and health status.
This study explores the beneficial effects of Auricularia auricula (AA) as a feed additive in promoting growth, digestive enzyme activities, antioxidative responses, heat tolerance, and disease resistance against Edwardsiella tarda in African catfish (Clarias gariepinus) farming. The application of feed additives is a hot topic in recent aquaculture studies aimed at promoting the growth and health of aquaculture species. After 8 weeks of feeding trial, the results of the present study revealed that fish-fed AA diets performed significantly better (p
Carp is a key aquaculture species worldwide. The intensification of carp farming, aimed at meeting the high demand for protein sources for human consumption, has resulted in adverse effects such as poor water quality, increased stress, and disease outbreaks. While antibiotics have been utilized to mitigate these issues, their use poses risks to both public health and the environment. As a result, alternative and more sustainable practices have been adopted to manage the health of farmed carp, including the use of probiotics, prebiotics, phytobiotics, and vaccines to prevent disease outbreaks. Phytobiotics, being both cost-effective and abundant, have gained widespread acceptance. They offer various benefits in carp farming, such as improved growth performance, enhanced immune system, increased antioxidant capacity, stress alleviation from abiotic factors, and enhanced disease resistance. Currently, a focal point of research involves employing molecular approaches to assess the impacts of phytobiotics in aquatic animals. Gene expression, the process by which genetic information encoded is translated into function, along with transcription profiling, serves as a crucial tool for detecting changes in gene expression within cells. These changes provide valuable insights into the growth rate, immune system, and flesh quality of aquatic animals. This review delves into the positive impacts of phytobiotics on immune responses, growth, antioxidant capabilities, and flesh quality, all discerned through gene expression changes in carp species. Furthermore, this paper explores existing research gaps and outlines future prospects for the utilization of phytobiotics in aquaculture.
Soybean lecithin is extensively used as the dietary supplementation of phospholipids in animal production. Soybean lecithin plays significant roles in aquafeed as growth promoter, feed enhancer, immunity modulator and antioxidant activity stimulator for aquaculture species. Besides, soybean lecithin is also reported to help aquaculture species being resilient to physical and chemical stressors. In this review, common sources, chemical structure and mode of action of lecithin, with highlight on soybean lecithin application in aquaculture over four-decadal studies published between 1983 and 2023, were evaluated and summarized. By far, soybean lecithin is best-known for its beneficial effects, availability yet cost-effective for aquafeed formulation. Findings from this review also demonstrate that although nutritional profile of long-chain polyunsaturated fatty acids and phosphatidylcholine from egg yolk and marine sources are superior to those from plant sources such as soybean, it is rather costly for sustainable application in aquafeed formulation. Moreover, commercially available products that incorporate soybean lecithin with other feed additives are promising to boost aquaculture production. Overall, effects of soybean lecithin supplementation are well-recognized on larval and juvenile of aquaculture species which having limited ability to biosynthesis phospholipids de novo, and correspondingly attribute to phospholipid, a primary component of soybean lecithin, that is essential for rapid growth during early stages development. In addition, soybean lecithin supplementation plays a distinguish role in stimulating maturation of gonadal development in the adults, especially for crustaceans.
Edwardsiellosis caused by Edwardsiella tarda resulted in significant economic losses in aquaculture operations worldwide. This disease could infect a wide range of hosts, including freshwater, brackish water, and marine aquatic animals. Currently, antibiotics and vaccines are being used as prophylactic agents to overcome Edwardsiellosis in aquaculture. However, application of antibiotics has led to antibiotic resistance among pathogenic bacteria, and the antibiotic residues pose a threat to public health. Meanwhile, the use of vaccines to combat Edwardsiellosis requires intensive labor work and high costs. Thus, phytobiotics were attempted to be used as antimicrobial agents to minimize the impact of Edwardsiellosis in aquaculture. These phytobiotics may also provide farmers with new options to manage aquaculture species' health. The impact of Edwardsiellosis in aquaculture worldwide was elaborated on and highlighted in this review study, as well as the recent application of phytobiotics in aquaculture and the status of vaccines to combat Edwardsiellosis. This review also focuses on the potential of phytobiotics in improving aquatic animal growth performance, enhancing immune system function, and stimulating disease resistance.
Aeromonas hydrophila is a ubiquitous bacterium with various hosts that causes mass mortality in farm-raised fish species and significant economic losses. The current antibiotic treatment is ineffective in controlling this bacterium infection in aquaculture species. Therefore, an evaluation of potential phytobiotics is needed to find an alternative antimicrobial agent to reduce the over-reliance on antibiotics in aquaculture and safeguard public and environmental health. Furthermore, the rise in antibiotic resistance cases among pathogenic bacteria indicates an urgent need for new fish and shellfish health management solutions. In this context, phytobiotics applications in aquaculture can be defined as any medicinal plant-based antimicrobial agent used in fish and shellfish health management. This review will focus on the impacts of Motile Aeromonas Septicemia (MAS) due to A. hydrophila in aquaculture, the potential of phytobiotics in enhancing the tolerance of aquaculture species against MAS and the combination of phytobiotics with other antimicrobial and therapeutic agents against MAS.