Displaying all 4 publications

Abstract:
Sort:
  1. Jamaluddin N, Stuckey DC, Ariff AB, Faizal Wong FW
    Crit Rev Food Sci Nutr, 2018;58(14):2453-2465.
    PMID: 28609113 DOI: 10.1080/10408398.2017.1328658
    Bacteriocin is a proteinaceous biomolecule produced by bacteria (both Gram-positive and Gram-negative) that exhibits antimicrobial activity against closely related species, and food-borne pathogens. It has recently gained importance and attracted the attention of several researchers looking to produce it from various substrates and bacterial strains. This ushers in a new era of food preservation where the use of bacteriocin in food products will be an alternative to chemical preservatives, and heat treatment which are understood to cause unwanted side effects, and reduce sensory and nutritional quality. However, this new market depends on the success of novel downstream separation schemes from various types of crude feedstocks which are both effective and economic. This review focuses on the downstream separation of bacteriocin from various sources using both conventional and novel techniques. Finally, recommendations for future interesting areas of research that need to be pursued are highlighted.
  2. Chin ZW, Arumugam K, Ashari SE, Faizal Wong FW, Tan JS, Ariff AB, et al.
    Molecules, 2020 Jul 28;25(15).
    PMID: 32731437 DOI: 10.3390/molecules25153416
    The biosynthesis of calcium carbonate (CaCO3) minerals through a metabolic process known as microbially induced calcium carbonate precipitation (MICP) between diverse microorganisms, and organic/inorganic compounds within their immediate microenvironment, gives rise to a cementitious biomaterial that may emerge as a promissory alternative to conventional cement. Among photosynthetic microalgae, Chlorella vulgaris has been identified as one of the species capable of undergoing such activity in nature. In this study, response surface technique was employed to ascertain the optimum condition for the enhancement of biomass and CaCO3 precipitation of C. vulgaris when cultured in Blue-Green (BG)-11 aquaculture medium. Preliminary screening via Plackett-Burman Design showed that sodium nitrate (NaNO3), sodium acetate, and urea have a significant effect on both target responses (p < 0.05). Further refinement was conducted using Box-Behnken Design based on these three factors. The highest production of 1.517 g/L C. vulgaris biomass and 1.143 g/L of CaCO3 precipitates was achieved with a final recipe comprising of 8.74 mM of NaNO3, 61.40 mM of sodium acetate and 0.143 g/L of urea, respectively. Moreover, polymorphism analyses on the collected minerals through morphological examination via scanning electron microscopy and crystallographic elucidation by X-ray diffraction indicated to predominantly calcite crystalline structure.
  3. Md Sidek NL, Tan JS, Abbasiliasi S, Wong FW, Mustafa S, Ariff AB
    PMID: 27262666 DOI: 10.1016/j.jchromb.2016.05.024
    An aqueous two-phase flotation (ATPF) system based on polyethylene glycol (PEG) and sodium citrate (NaNO3C6H5O7·2H2O) was considered for primary recovery of bacteriocin-like inhibitory substance (BLIS) from Pediococcus acidilactici Kp10. The effects of ATPF parameters namely phase composition, tie-line length (TLL), volume ratio between the two phases (VR), amount of crude load (CL), pH, nitrogen gas flow rate (FR) and flotation time (FT) on the performance of recovery were evaluated. BLIS was mainly concentrated into the upper PEG-rich phase in all systems tested so far. The optimum conditions for BLIS purification, which composed of PEG 8000/sodium citrate, were: TLL of 42.6, VR of 0.4, CL of 22% (w/w), pH 7, average FT of 30min and FR of 20mL/min. BLIS was partially purified up to 5.9-fold with a separation efficiency of 99% under this optimal conditions. A maximum yield of BLIS activity of about 70.3% was recovered in the PEG phase. The BLIS from the top phase was successfully recovered with a single band in SDS-gel with molecular weight of about 10-15kDa. ATPF was found to be an effective technique for the recovery of BLIS from the fermentation broth of P. acidilactici Kp10.
  4. Pannerchelvan S, Rios-Solis L, Faizal Wong FW, Zaidan UH, Wasoh H, Mohamed MS, et al.
    Food Funct, 2023 Mar 23.
    PMID: 36951915 DOI: 10.1039/d2fo03936b
    Gamma-aminobutyric acid (GABA) is a non-protein amino acid widely distributed in nature and extensively explored for its numerous physiological functions and effects on metabolic disorders. Lactic acid bacteria (LAB) are one of the most important GABA producers, vigorously pursued due to their high GABA content and generally regarded as safe (GRAS) status that allows for direct formulation in various GABA-enriched food products. To meet the strict requirements of the food and nutraceutical industries, the biosynthesis of GABA is typically preferred over the chemical synthesis route. The production of GABA varies among various strains of LAB and is affected by different fermentation conditions. Hence, optimizing the fermentation conditions to enhance the activity of the key enzyme glutamic acid decarboxylase is essential to maximize GABA production. This paper reviews the beneficial effects of GABA on human health and its applications in fermented food products. A particular emphasis is given to the biosynthetic approach for producing GABA by various LAB species via the microbial fermentation route. Efficient strategies for enhancing GABA production through optimization of the fermentation conditions, mode of fermentation, two-step fermentation, co-culturing approach, immobilization technique and genetic engineering are discussed in detail.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links