Displaying all 6 publications

Abstract:
Sort:
  1. Han MR, Zheng W, Cai Q, Gao YT, Zheng Y, Bolla MK, et al.
    Carcinogenesis, 2017 May 01;38(5):511-518.
    PMID: 28419251 DOI: 10.1093/carcin/bgx010
    Over the past 20 years, high-penetrance pathogenic mutations in genes BRCA1, BRCA2, TP53, PTEN, STK11 and CDH1 and moderate-penetrance mutations in genes CHEK2, ATM, BRIP1, PALB2, RAD51C, RAD50 and NBN have been identified for breast cancer. In this study, we investigated whether there are additional variants in these 13 genes associated with breast cancer among women of Asian ancestry. We analyzed up to 654 single nucleotide polymorphisms (SNPs) from 6269 cases and 6624 controls of Asian descent included in the Breast Cancer Association Consortium (BCAC), and up to 236 SNPs from 5794 cases and 5529 controls included in the Shanghai Breast Cancer Genetics Study (SBCGS). We found three missense variants with minor allele frequency (MAF) <0.05: rs80358978 (Gly2508Ser), rs80359065 (Lys2729Asn) and rs11571653 (Met784Val) in the BRCA2 gene, showing statistically significant associations with breast cancer risk, with P-values of 1.2 × 10-4, 1.0 × 10-3 and 5.0 × 10-3, respectively. In addition, we found four low-frequency variants (rs8176085, rs799923, rs8176173 and rs8176258) in the BRCA1 gene, one common variant in the CHEK2 gene (rs9620817), and one common variant in the PALB2 gene (rs13330119) associated with breast cancer risk at P < 0.01. Our study identified several new risk variants in BRCA1, BRCA2, CHEK2, and PALB2 genes in relation to breast cancer risk in Asian women. These results provide further insights that, in addition to the high/moderate penetrance mutations, other low-penetrance variants in these genes may also contribute to breast cancer risk.
  2. Yu D, Zheng W, Johansson M, Lan Q, Park Y, White E, et al.
    J Natl Cancer Inst, 2018 Aug 01;110(8):831-842.
    PMID: 29518203 DOI: 10.1093/jnci/djx286
    BACKGROUND: The obesity-lung cancer association remains controversial. Concerns over confounding by smoking and reverse causation persist. The influence of obesity type and effect modifications by race/ethnicity and tumor histology are largely unexplored.

    METHODS: We examined associations of body mass index (BMI), waist circumference (WC), and waist-hip ratio (WHR) with lung cancer risk among 1.6 million Americans, Europeans, and Asians. Cox proportional hazard regression was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) with adjustment for potential confounders. Analyses for WC/WHR were further adjusted for BMI. The joint effect of BMI and WC/WHR was also evaluated.

    RESULTS: During an average 12-year follow-up, 23 732 incident lung cancer cases were identified. While BMI was generally associated with a decreased risk, WC and WHR were associated with increased risk after controlling for BMI. These associations were seen 10 years before diagnosis in smokers and never smokers, were strongest among blacks, and varied by histological type. After excluding the first five years of follow-up, hazard ratios per 5 kg/m2 increase in BMI were 0.95 (95% CI = 0.90 to 1.00), 0.92 (95% CI = 0.89 to 0.95), and 0.89 (95% CI = 0.86 to 0.91) in never, former, and current smokers, and 0.86 (95% CI = 0.84 to 0.89), 0.94 (95% CI = 0.90 to 0.99), and 1.09 (95% CI = 1.03 to 1.15) for adenocarcinoma, squamous cell, and small cell carcinoma, respectively. Hazard ratios per 10 cm increase in WC were 1.09 (95% CI = 1.00 to 1.18), 1.12 (95% CI = 1.07 to 1.17), and 1.11 (95% CI = 1.07 to 1.16) in never, former, and current smokers, and 1.06 (95% CI = 1.01 to 1.12), 1.20 (95% CI = 1.12 to 1.29), and 1.13 (95% CI = 1.04 to 1.23) for adenocarcinoma, squamous cell, and small cell carcinoma, respectively. Participants with BMIs of less than 25 kg/m2 but high WC had a 40% higher risk (HR = 1.40, 95% CI = 1.26 to 1.56) than those with BMIs of 25 kg/m2 or greater but normal/moderate WC.

    CONCLUSIONS: The inverse BMI-lung cancer association is not entirely due to smoking and reverse causation. Central obesity, particularly concurrent with low BMI, may help identify high-risk populations for lung cancer.

  3. Yang Y, Shu X, Shu XO, Bolla MK, Kweon SS, Cai Q, et al.
    EBioMedicine, 2019 Oct;48:203-211.
    PMID: 31629678 DOI: 10.1016/j.ebiom.2019.09.006
    BACKGROUND: We previously conducted a systematic field synopsis of 1059 breast cancer candidate gene studies and investigated 279 genetic variants, 51 of which showed associations. The major limitation of this work was the small sample size, even pooling data from all 1059 studies. Thereafter, genome-wide association studies (GWAS) have accumulated data for hundreds of thousands of subjects. It's necessary to re-evaluate these variants in large GWAS datasets.

    METHODS: Of these 279 variants, data were obtained for 228 from GWAS conducted within the Asian Breast Cancer Consortium (24,206 cases and 24,775 controls) and the Breast Cancer Association Consortium (122,977 cases and 105,974 controls of European ancestry). Meta-analyses were conducted to combine the results from these two datasets.

    FINDINGS: Of those 228 variants, an association was observed for 12 variants in 10 genes at a Bonferroni-corrected threshold of P 

  4. Cai Q, Zhang B, Sung H, Low SK, Kweon SS, Lu W, et al.
    Nat Genet, 2014 Aug;46(8):886-90.
    PMID: 25038754 DOI: 10.1038/ng.3041
    In a three-stage genome-wide association study among East Asian women including 22,780 cases and 24,181 controls, we identified 3 genetic loci newly associated with breast cancer risk, including rs4951011 at 1q32.1 (in intron 2 of the ZC3H11A gene; P=8.82×10(-9)), rs10474352 at 5q14.3 (near the ARRDC3 gene; P=1.67×10(-9)) and rs2290203 at 15q26.1 (in intron 14 of the PRC1 gene; P=4.25×10(-8)). We replicated these associations in 16,003 cases and 41,335 controls of European ancestry (P=0.030, 0.004 and 0.010, respectively). Data from the ENCODE Project suggest that variants rs4951011 and rs10474352 might be located in an enhancer region and transcription factor binding sites, respectively. This study provides additional insights into the genetics and biology of breast cancer.
  5. Shu X, Long J, Cai Q, Kweon SS, Choi JY, Kubo M, et al.
    Nat Commun, 2020 Mar 05;11(1):1217.
    PMID: 32139696 DOI: 10.1038/s41467-020-15046-w
    Known risk variants explain only a small proportion of breast cancer heritability, particularly in Asian women. To search for additional genetic susceptibility loci for breast cancer, here we perform a meta-analysis of data from genome-wide association studies (GWAS) conducted in Asians (24,206 cases and 24,775 controls) and European descendants (122,977 cases and 105,974 controls). We identified 31 potential novel loci with the lead variant showing an association with breast cancer risk at P 
  6. Earp M, Tyrer JP, Winham SJ, Lin HY, Chornokur G, Dennis J, et al.
    PLoS One, 2018;13(7):e0197561.
    PMID: 29979793 DOI: 10.1371/journal.pone.0197561
    Epithelial ovarian cancer (EOC) is the fifth leading cause of cancer mortality in American women. Normal ovarian physiology is intricately connected to small GTP binding proteins of the Ras superfamily (Ras, Rho, Rab, Arf, and Ran) which govern processes such as signal transduction, cell proliferation, cell motility, and vesicle transport. We hypothesized that common germline variation in genes encoding small GTPases is associated with EOC risk. We investigated 322 variants in 88 small GTPase genes in germline DNA of 18,736 EOC patients and 26,138 controls of European ancestry using a custom genotype array and logistic regression fitting log-additive models. Functional annotation was used to identify biofeatures and expression quantitative trait loci that intersect with risk variants. One variant, ARHGEF10L (Rho guanine nucleotide exchange factor 10 like) rs2256787, was associated with increased endometrioid EOC risk (OR = 1.33, p = 4.46 x 10-6). Other variants of interest included another in ARHGEF10L, rs10788679, which was associated with invasive serous EOC risk (OR = 1.07, p = 0.00026) and two variants in AKAP6 (A-kinase anchoring protein 6) which were associated with risk of invasive EOC (rs1955513, OR = 0.90, p = 0.00033; rs927062, OR = 0.94, p = 0.00059). Functional annotation revealed that the two ARHGEF10L variants were located in super-enhancer regions and that AKAP6 rs927062 was associated with expression of GTPase gene ARHGAP5 (Rho GTPase activating protein 5). Inherited variants in ARHGEF10L and AKAP6, with potential transcriptional regulatory function and association with EOC risk, warrant investigation in independent EOC study populations.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links