Displaying all 4 publications

Abstract:
Sort:
  1. Fu J, Yap JX, Leo CP, Chang CK
    Int J Biol Macromol, 2023 Apr 15;234:123642.
    PMID: 36791941 DOI: 10.1016/j.ijbiomac.2023.123642
    Although anionic polyelectrolyte hydrogel beads offer attractive adsorption of cationic dyes, phosphate adsorption is limited by electrostatic interactions. In this work, carboxymethyl cellulose (CMC)/sodium alginate (SA) hydrogel beads were modified with calcium carbonate (CaCO3) and/or bentonite (Be). The compatibility between CaCO3 and Be was proven by the homogeneous surface, as shown in the scanning electron microscopic images. Fourier-transform infrared and X-ray diffraction spectra further confirmed the existence of inorganic filler in the hydrogel beads. Although CMC/SA/Be/CaCO3 hydrogel beads attained the highest methylene blue and phosphate adsorption capacities (142.15 MB mg/g, 90.31 P mg/g), phosphate adsorption was significantly improved once CaCO3 nanoparticles were incorporated into CMC/SA/CaCO3 hydrogel beads. The kinetics of MB adsorption by CMC/SA hydrogel beads with or without inorganic fillers could be described by the pseudo-second-order model under chemical interactions. The phosphate adsorption by CMC/SA/Be/CaCO3 hydrogel beads could be explained by the Elovich model due to heterogeneous properties. The incorporation of Be and CaCO3 also improved the phosphate adsorption through chemical interaction since Langmuir isotherm fitted the phosphate adsorption by CMC/SA/Be/CaCO3 hydrogel beads. Unlike MB adsorption, the reusability of these hydrogel beads in phosphate adsorption reduced slightly after 5 cycles.
  2. Yap JX, Leo CP, Mohd Yasin NH, Derek CJC
    Chemosphere, 2021 Jun;273:129657.
    PMID: 33524750 DOI: 10.1016/j.chemosphere.2021.129657
    Microalgae cultivation using open cultivation systems requires large area and it is susceptible to contamination as well as weather changes. Meanwhile, the closed systems require large capital investment, and they are susceptible to the build-up of dissolved oxygen. Air-liquid interface culture systems with low water-footprint, but high packing density can be used for microalgae cultivation if low-cost culture scaffolds are available. In this study, cellulose-based scaffolds were synthesized using NaOH/urea aqueous solution as the solvent. Titanium dioxide (TiO2), silica gel and polyethylene glycol 1000 (PEG 1000) nanoparticles were added into the membrane scaffolds to increase the hydrophilicity of nutrient absorbing to support the growth of microalgae. The membrane scaffolds were characterized by FTIR, SEM, contact angle, porosity and porometry. All three nanoparticles additives showed their ability in reducing the contact angle of membrane scaffolds from 63.4 ± 2.3° to a range of 52.6 ± 1.2° to 38.8 ± 1.5° due to the hydrophilic properties of the nanoparticles. The decreasing in pore size when nanoparticles were added did not affect the porosity of membrane scaffolds. Cellulose membrane scaffold with TiO2 showed the highest percentage of microalgae Navicula incerta growth rate of 22.1% because of the antibacterial properties of TiO2 in lowering the risk of cell contamination and enhancing the growth of N. incerta. The results exhibited that cellulose-based scaffold with TiO2 added could be an effective support in plant cell culture field.
  3. Yap JX, Leo CP, Mohd Yasin NH, Show PL, Derek CJC
    Environ Res, 2021 08;199:111298.
    PMID: 33971133 DOI: 10.1016/j.envres.2021.111298
    Culture scaffolds allow microalgae cultivation with minimum water requirement using the air-liquid interface approach. However, the stability of cellulose-based scaffolds in microalgae cultivation remains questionable. In this study, the stability of regenerated cellulose culture scaffolds was enhanced by adjusting TiO2 loading and casting gap. The membrane scaffolds were synthesized using cellulose dissolved in NaOH/urea aqueous solution with various loading of TiO2 nanoparticles. The TiO2 nanoparticles were embedded into the porous membrane scaffolds as proven by Fourier transform infrared spectra, scanning electron microscopic images, and energy-dispersive X-ray spectra. Although surface hydrophilicity and porosity were enhanced by increasing TiO2 and casting gap, the scaffold pore size was reduced. Cellulose membrane scaffold with 0.05 wt% of TiO2 concentration and thickness of 100 μm attained the highest percentage of Navicula incerta growth rate, up to 37.4%. The membrane scaffolds remained stable in terms of weight, porosity and pore size even they were immersed in acidic solution, hydrogen peroxide or autoclaved at 121 °C for 15 min. The optimal cellulose membrane scaffold is with TiO2 loading of 0.5 wt% and thickness of 100 μm, resulting in supporting the highest N. incerta growth rate and and exhibits good membrane stability.
  4. Yap JX, Leo CP, Mohd Yasin NH, Show PL, Chu DT, Singh V, et al.
    Bioengineered, 2022 02;13(2):2226-2247.
    PMID: 35030968 DOI: 10.1080/21655979.2021.2024322
    Traditionally existing 2D culture scaffold has been inappropriately validated due to the failure in generating the precise therapeutic response. Therefore, this leads to the fabrication of 3D culture scaffold resolving the limitations in the in vivo environment. In recent years, tissue engineering played an important role in the field of bio-medical engineering. Biopolymer material, a novel natural material with excellent properties of nontoxic and biodegradable merits can be served as culture scaffold. This review summarizes the modifications of natural biopolymeric culture scaffold with different crosslinkers and their application. In addition, this review provides the recent progress of natural biopolymeric culture scaffold mainly focusing on their properties, synthesizing and modification and application.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links