One hundred and fifty one house rats, Rattus rattus diardii from five different localities, Jinjang, Dato Keramat, Kuala Lumpur, Sungai Besi and Selayang Baru, were examined for parasites. Nineteen species of parasites were recovered. Hymenolepis diminuta and Nippostrongylus brasiliensis are the predominant species. The dominancy of the parasite species in the rats differed in each locality: Hymenolepis diminuta in Dato Keramat and Kuala Lumpur; Nippostrongylus brasiliensis in Sungai Besi; Gongylomena neoplasticum in Jinjang and Selayang Baru. The influences of human habitats on the parasite fauna of house rats are discussed.
Malaysian Sciuridae are often parasitised by 2 species of Hepatocystis which were described as a single species Hepatocystis vassali malayensis by Field and Edeson, (1950). One of them corresponds to the majority of forms seen by Field and Edeson; it is redescribed herein and raised to specific status: H. v. malayensis becomes H. malayensis Field and Edeson, 1950. By the morphological characteristics of its gametocytes and schizonts, H. malayensis is related to H. kochi. The evolution of tissue schizonts studied at liver biopsies and autopsies of squirrels captured shortly before examination is of a peculiar type: an immunological tissue reaction appears with the hyperinfestation of the Rodents and controls the growth of the schizonts.
A new Haemoproteid of Malaysian Microchiroptera (Hepatochstis rodhaini n. sp.) is described; it is classified in the genus Hepatocystis because of the morphology of its gametocytes and tissue schizonts.
It is more than 50 years since the Epstein-Barr virus (EBV), the first human tumour virus, was discovered. EBV has subsequently been found to be associated with a diverse range of tumours of both lymphoid and epithelial origin. Progress in the molecular analysis of EBV has revealed fundamental mechanisms of more general relevance to the oncogenic process. This Timeline article highlights key milestones in the 50-year history of EBV and discusses how this virus provides a paradigm for exploiting insights at the molecular level in the diagnosis, treatment and prevention of cancer.
Almost all drugs approved for use in humans possess potentially beneficial 'off-target' effects in addition to their principal activity. In some cases this has allowed for the relatively rapid repurposing of drugs for other indications. In this review we focus on the potential for re-purposing FTY720 (also known as fingolimod, Gilenya(™)), an immunomodulatory drug recently approved for the treatment of multiple sclerosis (MS). The therapeutic benefit of FTY720 in MS is largely attributed to the immunosuppressive effects that result from its modulation of sphingosine 1-phosphate receptor signalling. However, this drug has also been shown to inhibit other cancer-associated signal transduction pathways in part because of its structural similarity to sphingosine, and consequently shows efficacy as an anti-cancer agent both in vitro and in vivo. Here, we review the effects of FTY720 on signal transduction pathways and cancer-related cellular processes, and discuss its potential use as an anti-cancer drug.
Many of the characteristics ascribed to cancer-associated fibroblasts (CAFs) are shared by activated, autophagic and senescent fibroblasts. Whilst most oral squamous cell carcinomas (OSCCs) are genetically unstable (GU-OSCC), genetically stable variants (GS-OSCC) have been described and, notably, CAF activation (myofibroblast differentiation) and senescence are characteristics particularly associated with GU-OSCCs. However, it is not known whether autophagy is disrupted in these cells or whether autophagy regulates the development of the myofibroblast and senescent phenotypes. In this study, we show that senescent CAFs from GU-OSCCs contained more autophagosomes than normal human oral fibroblasts (NHOFs) and CAFs from GS-OSCCs possibly due to autophagic impairment. Further, we show that deregulation of autophagy in normal fibroblasts, either by inhibition with autophagy inhibitor, SAR405, or activation with TGF-β1, induced fibroblast activation and senescence: In response to TGF-β1, autophagy was induced prior to the development of the activated and senescent phenotypes. Lastly, we show that both SAR405- and TGF-β1-treated NHOFs enhance OSCC cell migration but only TGF-β1-treated cells increase OSCC invasion through Matrigel, indicating that TGF-β1 has additional effects that are independent of fibroblast activation/senescence. These results suggest a functional role for autophagy in the development of myofibroblast and CAF phenotypes.
Epstein-Barr virus (EBV) is associated with a diverse range of tumors of both lymphoid and epithelial origin. Similar to other herpesviruses, EBV displays a bipartite life cycle consisting of latent and lytic phases. Current dogma indicates that the latent genes are key drivers in the pathogenesis of EBV-associated cancers, while the lytic genes are primarily responsible for viral transmission. In recent years, evidence has emerged to show that the EBV lytic phase also plays an important role in EBV tumorigenesis, and the expression of EBV lytic genes is frequently detected in tumor tissues and cell lines. The advent of next generation sequencing has allowed the comprehensive profiling of EBV gene expression, and this has revealed the consistent expression of several lytic genes across various types of EBV-associated cancers. In this review, we provide an overview of the functional implications of EBV lytic gene expression to the oncogenic process and discuss possible avenues for future investigations.
Dog sera, collected from different communities throughout Selangor, Peninsular Malaysia, were investigated for the presence of antibodies to R. tsutsugamushi and R. typhi. Scrub typhus antibodies were present in animals from the rural areas only, whereas murine typhus antibodies were observed in equal numbers of dogs from both rural and metropolitan areas. Greater percentage of dogs from suburban areas had demonstrable antibody titers to murine typhus than from the urban area.
NOTCH signalling can exert oncogenic or tumour suppressive effects in both solid and haematological malignancies. Similar to T-cell acute lymphoblastic leukaemia (T-ALL), early studies suggested a pro-tumorigenic role of NOTCH in head and neck squamous cell carcinoma (HNSCC), mainly based on the increased expression levels of the genes within the pathway. Recently, data from exome sequencing analyses unexpectedly pointed to a tumour suppressor role for NOTCH in HNSCC by identifying loss-of-function mutations in the NOTCH1 gene in a significant proportion of patients. These data have questioned the accepted role of NOTCH in HNSCC and the possible rationale of targeting NOTCH in this disease. This review summarises the current information on NOTCH signalling in HNSCC and discusses how this pathway can apparently exert opposing effects within the same disease.
S1P is a small bioactive lipid which exerts its effects following binding to a family of five G protein-coupled receptors, known as S1P1-5. Following receptor activation, multiple signalling cascades are activated, allowing S1P to regulate a range of cellular processes, such as proliferation, apoptosis, migration and angiogenesis. There is strong evidence implicating the involvement of S1P receptors (S1PRs) in cancer progression and the oncogenic effects of S1P can result from alterations in the expression of one or more of the S1PRs and/or the enzymes that regulate the levels of S1P. However, cooperativity between the individual S1PRs, functional interactions with receptor tyrosine kinases and the sub-cellular localisation of the S1PRs within tumour cells also appear to play a role in mediating the effects of S1PR signalling during carcinogenesis. Here we review what is known regarding the role of individual S1PRs in cancer and discuss the recent evidence to suggest cross-talk between the S1PRs and other cellular signalling pathways in cancer. We will also discuss the therapeutic potential of targeting the S1PRs and their downstream signalling pathways for the treatment of cancer.
Protein arginine methyltransferases (PRMTs) catalyse the methylation of arginine residues of target proteins. PRMTs utilise S-adenosyl methionine (SAM) as the methyl group donor, leading to S-adenosyl homocysteine (SAH) and monomethylarginine (mMA). A combination of homology modelling, molecular docking, Active Site Pressurisation, molecular dynamic simulations and MM-PBSA free energy calculations is used to investigate the binding poses of three PRMT1 inhibitors (ligands 1-3), which target both SAM and substrate arginine binding sites by containing a guanidine group joined by short linkers with the SAM derivative. It was assumed initially that the adenine moieties of the inhibitors would bind in sub-site 1 (PHE44, GLU137, VAL136 and GLU108), the guanidine side chain would occupy sub-site 2 (GLU 161, TYR160, TYR156 and TRP302), with the amino acid side chain occupying sub-site 3 (GLU152, ARG62, GLY86 and ASP84; pose 1). However, the SAH homocysteine moiety does not fully occupy sub-site 3, suggesting another binding pose may exist (pose 2), whereby the adenine moiety binds in sub-site 1, the guanidine side chain occupies sub-site 3, and the amino acid side chain occupies sub-site 2. Our results indicate that ligand 1 (pose 1 or 2), ligand 2 (pose 2) and ligand 3 (pose 1) are the predominant binding poses and we demonstrate for the first time that sub-site 3 contains a large space that could be exploited in the future to develop novel inhibitors with higher binding affinities.
The transforming growth factor-β (TGF-β) signalling pathway plays a critical role in carcinogenesis. It has a biphasic action by initially suppressing tumorigenesis but promoting tumour progression in the later stages of disease. Consequently, the functional outcome of TGF-β signalling is strongly context-dependent and is influenced by various factors including cell, tissue and cancer type. Disruption of this pathway can be caused by various means, including genetic and environmental factors. A number of human viruses have been shown to modulate TGF-β signalling during tumorigenesis. In this review, we describe how this pathway is perturbed in Epstein-Barr virus (EBV)-associated cancers and how EBV interferes with TGF-β signal transduction. The role of TGF-β in regulating the EBV life cycle in tumour cells is also discussed.
The relationship between Epstein-Barr virus (EBV) and the germinal centre (GC) of the asymptomatic host remains an enigma. The occasional appearance of EBV-positive germinal centres in some patients, particularly those with a history of immunosuppression, suggests that EBV numbers in the GC are subject to immune control. The relationship, if any, between lymphoid hyperplasia with EBV-positive germinal centres and subsequent or concurrent lymphomagenesis remains to be clarified. As far as the development of EBV-associated Hodgkin's lymphoma is concerned, the suppression of virus replication, mediated by LMP1 on the one hand, and the loss of B-cell receptor signalling on the other, appears to be an important pathogenic mechanism. A further important emerging concept is that alterations in the microenvironment of the EBV-infected B-cell may be important for lymphomagenesis.