Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Voglmayr H, Yule CM
    Mycol. Res., 2006 Oct;110(Pt 10):1242-52.
    PMID: 17018253
    During an investigation of submerged leaves and twigs sampled from tropical peat swamp forests located in Peninsular Malaysia, an anamorphic fungus not attributable to a described genus was detected and isolated in pure culture. Conidial ontogeny was thoroughly studied and illustrated using both light and SEM, which revealed a unique conidial morphology. Analysis of partial nuLSU rDNA and ITS data revealed a phylogenetic position within the Xylariales (Ascomycota), but family affiliation remained unclear.
  2. Jinggut T, Yule CM, Boyero L
    Sci Total Environ, 2012 Oct 15;437:83-90.
    PMID: 22922133 DOI: 10.1016/j.scitotenv.2012.07.062
    In common with most of Borneo, the Bakun region of Sarawak is currently subject to heavy deforestation mainly due to logging and, to a lesser extent, traditional slash-and-burn farming practices. This has the potential to affect stream ecosystems, which are integrators of environmental change in the surrounding terrestrial landscape. This study evaluated the effects of both types of deforestation by using functional and structural indicators (leaf litter decomposition rates and associated detritivores or 'shredders', respectively) to compare a fundamental ecosystem process, leaf litter decomposition, within logged, farmed and pristine streams. Slash-and-burn agricultural practices increased the overall rate of decomposition despite a decrease in shredder species richness (but not shredder abundance) due to increased microbial decomposition. In contrast, decomposition by microbes and invertebrates was slowed down in the logged streams, where shredders were less abundant and less species rich. This study suggests that shredder communities are less affected by traditional agricultural farming practices, while modern mechanized deforestation has an adverse effect on both shredder communities and leaf breakdown.
  3. Jackson CR, Liew KC, Yule CM
    Microb Ecol, 2009 Apr;57(3):402-12.
    PMID: 18548182 DOI: 10.1007/s00248-008-9409-4
    Tropical peat swamp forests are important and endangered ecosystems, although little is known of their microbial diversity and ecology. We used molecular and enzymatic techniques to examine patterns in prokaryotic community structure and overall microbial activity at 0-, 10-, 20-, and 50-cm depths in sediments in a peat swamp forest in Malaysia. Denaturing gradient gel electrophoresis profiles of amplified 16S ribosomal ribonucleic acid (rRNA) gene fragments showed that different depths harbored different bacterial assemblages and that Archaea appeared to be limited to the deeper samples. Cloning and sequencing of longer 16S rRNA gene fragments suggested reduced microbial diversity in the deeper samples compared to the surface. Bacterial clone libraries were largely dominated by ribotypes affiliated with the Acidobacteria, which accounted for at least 27-54% of the sequences obtained. All of the sequenced representatives from the archaeal clone libraries were Crenarchaeota. Activities of microbial extracellular enzymes involved in carbon, nitrogen, and phosphorus cycling declined appreciably with depth, the only exception being peroxidase. These results show that tropical peat swamp forests are unusual systems with microbial assemblages dominated by members of the Acidobacteria and Crenarchaeota. Microbial communities show clear changes with depth, and most microbial activity is likely confined to populations in the upper few centimeters, the site of new leaf litter fall, rather than the deeper, older, peat layers.
  4. Yule CM, Lim YY, Lim TY
    Carbon Balance Manag, 2018 Feb 07;13(1):3.
    PMID: 29417248 DOI: 10.1186/s13021-018-0092-6
    BACKGROUND: Tropical peat swamp forests (TPSF) are globally significant carbon stores, sequestering carbon mainly as phenolic polymers and phenolic compounds (particularly as lignin and its derivatives) in peat layers, in plants, and in the acidic blackwaters. Previous studies show that TPSF plants have particularly high levels of phenolic compounds which inhibit the decomposition of organic matter and thus promote peat accumulation. The studies of phenolic compounds are thus crucial to further understand how TPSF function with respect to carbon sequestration. Here we present a study of cycling of phenolic compounds in five forests in Borneo differing in flooding and acidity, leaching of phenolic compounds from senescent Macaranga pruinosa leaves, and absorption of phenolics by M. pruinosa seedlings.

    RESULTS: The results of the study show that total phenolic content (TPC) in soil and leaves of three species of Macaranga were highest in TPSF followed by freshwater swamp forest and flooded limestone forest, then dry land sites. Highest TPC values were associated with acidity (in TPSF) and waterlogging (in flooded forests). Moreover, phenolic compounds are rapidly leached from fallen senescent leaves, and could be reabsorbed by tree roots and converted into more complex phenolics within the leaves.

    CONCLUSIONS: Extreme conditions-waterlogging and acidity-may facilitate uptake and synthesis of protective phenolic compounds which are essential for impeded decomposition of organic matter in TPSF. Conversely, the ongoing drainage and degradation of TPSF, particularly for conversion to oil palm plantations, reverses the conditions necessary for peat accretion and carbon sequestration.

  5. Evers S, Yule CM, Padfield R, O'Reilly P, Varkkey H
    Glob Chang Biol, 2017 Feb;23(2):534-549.
    PMID: 27399889 DOI: 10.1111/gcb.13422
    Pristine tropical peat swamp forests (PSFs) represent a unique wetland ecosystem of distinctive hydrology which support unique biodiversity and globally significant stores of soil carbon. Yet in Indonesia and Malaysia, home to 56% of the world's tropical peatland, they are subject to considerable developmental pressures, including widespread drainage to support agricultural needs. In this article, we review the ecology behind the functioning and ecosystem services provided by PSFs, with a particular focus on hydrological processes as well as the role of the forest itself in maintaining those services. Drawing on this, we review the suitability of current policy frameworks and consider the efficacy of their implementation. We suggest that policies in Malaysia and Indonesia are often based around the narrative of oil palm and other major monocrops as drivers of prosperity and development. However, we also argue that this narrative is also being supported by a priori claims concerning the possibility of sustainability of peat swamp exploitation via drainage-based agriculture through the adherence to best management practices. We discuss how this limits their efficacy, uptake and the political will towards enforcement. Further, we consider how both narratives (prosperity and sustainability) clearly exclude important considerations concerning the ecosystem value of tropical PSFs which are dependent on their unimpacted hydrology. Current research clearly shows that the actual debate should be focused not on how to develop drainage-based plantations sustainably, but on whether the sustainable conversion to drainage-based systems is possible at all.
  6. Dhandapani S, Ritz K, Evers S, Yule CM, Sjögersten S
    Sci Total Environ, 2019 Mar 10;655:220-231.
    PMID: 30471590 DOI: 10.1016/j.scitotenv.2018.11.046
    Tropical peatlands are globally important ecosystems with high C storage and are endangered by anthropogenic disturbances. Microbes in peatlands play an important role in sustaining the functions of peatlands as a C sink, yet their characteristics in these habitats are poorly understood. This research aimed to elucidate the responses of these complex ecosystems to disturbance by exploring greenhouse gas (GHG) emissions, nutrient contents, soil microbial communities and the functional interactions between these components in a primary and secondary peat swamp forest in Peninsular Malaysia. GHG measurements using closed chambers, and peat sampling were carried out in both wet and dry seasons. Microbial community phenotypes and nutrient content were determined using phospholipid fatty acid (PLFA) and inductively-coupled plasma mass spectrometry (ICP-MS) analyses respectively. CO2 emissions in the secondary peat swamp forest were > 50% higher than in the primary forest. CH4 emission rates were ca. 2 mg m-2 h-1 in the primary forest but the secondary forest was a CH4 sink, showing no seasonal variations in GHG emissions. Almost all the nutrient concentrations were significantly lower in the secondary forest, postulated to be due to nutrient leaching via drainage and higher rates of decomposition. Cu and Mo concentrations were negatively correlated with CO2 and CH4 emissions respectively. Microbial community structure was overwhelmingly dominated by bacteria in both forest types, however it was highly sensitive to land-use change and season. Gram-positive and Gram-negative relative abundance were positively correlated with CO2 and CH4 emissions respectively. Drainage related disturbances increased CO2 emissions, by reducing the nutrient content including some with known antimicrobial properties (Cu & Na) and by favouring Gram-positive bacteria over Gram-negative bacteria. These results suggest that the biogeochemistry of secondary peat swamp forest is fundamentally different from that of primary peat swamp forest, and these differences have significant functional impacts on their respective environments.
  7. Ong KS, Aw YK, Gan HM, Yule CM, Lee SM
    Genome Announc, 2014;2(5).
    PMID: 25301661 DOI: 10.1128/genomeA.01032-14
    We report the draft genome sequences of two antimicrobial-producing isolates, Burkholderia sp. strains MSh1 and MSh2, which were isolated from tropical peat swamp forest soil. Putative genes related to different antimicrobial production have been annotated in both genome sequences.
  8. Aw YK, Ong KS, Yule CM, Gan HM, Lee SM
    Genome Announc, 2014;2(5).
    PMID: 25301658 DOI: 10.1128/genomeA.01024-14
    We report the draft genome sequence of Paenibacillus sp. strain MSt1, which has broad-range antimicrobial activity, isolated from tropical peat swamp soil. Genes involved in antimicrobial biosynthesis are found to be present in this genome.
  9. Chua P, Har ZM, Austin CM, Yule CM, Dykes GA, Lee SM
    Genom Data, 2015 Sep;5:40-1.
    PMID: 26484221 DOI: 10.1016/j.gdata.2015.05.009
    We report the draft genome sequence of Cellulomonas sp. HZM, isolated from a tropical peat swamp forest. The draft genome size is 3,559,280 bp with a G + C content of 73% and contains 3 rRNA sequences (single copies of 5S, 16S and 23S rRNA).
  10. Chua P, Har ZM, Austin CM, Yule CM, Dykes GA, Lee SM
    Genom Data, 2015 Sep;5:38-9.
    PMID: 26484220 DOI: 10.1016/j.gdata.2015.05.008
    We report the draft genome sequence of Aeromonas sp. strain HZM, isolated from tropical peat swamp forest soil. The draft genome size is 4,451,364 bp with a G + C content of 61.7% and contains 10 rRNA sequences (eight copies of 5S rRNA genes, single copy of 16S and 23S rRNA each). The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. JEMQ00000000.
  11. Kavousi N, Eng WW, Lee YP, Tan LH, Thuraisingham R, Yule CM, et al.
    Genome Announc, 2016;4(2).
    PMID: 26941132 DOI: 10.1128/genomeA.00023-16
    We report here the first high-quality draft genome sequence of Pasteurella multocida sequence type 128, which was isolated from the infected finger bone of an adult female who was bitten by a domestic dog. The draft genome will be a valuable addition to the scarce genomic resources available for P. multocida.
  12. Aw YK, Ong KS, Lee LH, Cheow YL, Yule CM, Lee SM
    Front Microbiol, 2016;7:219.
    PMID: 26973605 DOI: 10.3389/fmicb.2016.00219
    Emergence of antimicrobial resistance coupled with the slowdown in discovery of new antimicrobial compounds points to serious consequences for human health. Therefore, scientists are looking for new antimicrobial compounds from unique and understudied ecosystems such as tropical peat swamp forests. Over the course of isolating antimicrobial producing bacteria from North Selangor tropical peat swamp forest, Malaysia, a Gram variable, rod shaped, endospore forming, facultative anaerobic novel strain MSt1(T) that exerts potent and broad spectrum antimicrobial activity was isolated. Phylogenetic analysis using 16S rRNA gene sequences showed that strain MSt1(T) belonged to the genus Paenibacillus with the highest similarity to Paenibacillus elgii SD17(T) (99.5%). Whole genome comparison between strain MSt1(T) with its closely related species using average nucleotide identity (ANI) revealed that similarity between strain MSt1(T) with P. elgii B69 (93.45%) and Paenibacillus ehimensis A2 (90.42%) was below the recommended threshold of 95%. Further analysis using in silico pairwise DDH also showed that similarity between strain MSt1(T) with P. elgii B69 (55.4%) and P. ehimensis A2 (43.7%) was below the recommended threshold of 70%. Strain MSt1(T) contained meso-diaminopilemic acid in the cell wall and MK-7 as the major menaquinone. The major fatty acids of strain MSt1(T) were anteiso-C15:0 (48.2%) and C16:0 (29.0%) whereas the polar lipid profile consisted of phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, one unknown lipid, two unknown glycolipids, and one unknown phospholipid. Total DNA G+C content of strain MSt1(T) was 51.5 mol%. The extract from strain MSt1(T) exerted strong antimicrobial activity against Escherichia coli ATCC 25922 (MIC = 1.5 μg/mL), MRSA ATCC 700699 (MIC = 25 μg/mL) and Candida albicans IMR (MIC = 12.5 μg/mL). Partially purified active fraction exerted a strong effect against E. coli ATCC 25922 resulting in cell rupture when viewed with SEM. Based on distinctive taxonomic differences between strain MSt1(T) when compared to its closely related type species, we propose that strain MSt1(T) represents a novel species within the genus of Paenibacillus, for which the name Paenibacillus tyrfis sp. nov. (= DSM 100708(T) = MCCC 1K01247(T)) is proposed.
  13. Roulston C, Paton-Walsh C, Smith TEL, Guérette ÉA, Evers S, Yule CM, et al.
    J Geophys Res Atmos, 2018 May 27;123(10):5607-5617.
    PMID: 30167349 DOI: 10.1029/2017JD027827
    Southeast Asia experiences frequent fires in fuel-rich tropical peatlands, leading to extreme episodes of regional haze with high concentrations of fine particulate matter (PM2.5) impacting human health. In a study published recently, the first field measurements of PM2.5 emission factors for tropical peat fires showed larger emissions than from other fuel types. Here we report even higher PM2.5 emission factors, measured at newly ignited peat fires in Malaysia, suggesting that current estimates of fine particulate emissions from peat fires may be underestimated by a factor of 3 or more. In addition, we use both field and laboratory measurements of burning peat to provide the first mechanistic explanation for the high variability in PM2.5 emission factors, demonstrating that buildup of a surface ash layer causes the emissions of PM2.5 to decrease as the peat fire progresses. This finding implies that peat fires are more hazardous (in terms of aerosol emissions) when first ignited than when still burning many days later. Varying emission factors for PM2.5 also have implications for our ability to correctly model the climate and air quality impacts downwind of the peat fires. For modelers able to implement a time-varying emission factor, we recommend an emission factor for PM2.5 from newly ignited tropical peat fires of 58 g of PM2.5 per kilogram of dry fuel consumed (g/kg), reducing exponentially at a rate of 9%/day. If the age of the fire is unknown or only a single value may be used, we recommend an average value of 24 g/kg.
  14. Too CC, Keller A, Sickel W, Lee SM, Yule CM
    Front Microbiol, 2018;9:2859.
    PMID: 30564202 DOI: 10.3389/fmicb.2018.02859
    Tropical peat swamp forests sequester globally significant stores of carbon in deep layers of waterlogged, anoxic, acidic and nutrient-depleted peat. The roles of microbes in supporting these forests through the formation of peat, carbon sequestration and nutrient cycling are virtually unknown. This study investigated physicochemical peat properties and microbial diversity between three dominant tree species: Shorea uliginosa (Dipterocarpaceae), Koompassia malaccensis (legumes associated with nitrogen-fixing bacteria), Eleiodoxa conferta (palm) and depths (surface, 45 and 90 cm) using microbial 16S rRNA gene amplicon sequencing. Water pH, oxygen, nitrogen, phosphorus, total phenolic contents and C/N ratio differed significantly between depths, but not tree species. Depth also strongly influenced microbial diversity and composition, while both depth and tree species exhibited significant impact on the archaeal communities. Microbial diversity was highest at the surface, where fresh leaf litter accumulates, and nutrient supply is guaranteed. Nitrogen was the core parameter correlating to microbial communities, but the interactive effects from various environmental variables displayed significant correlation to relative abundance of major microbial groups. Proteobacteria was the dominant phylum and the most abundant genus, Rhodoplanes, might be involved in nitrogen fixation. The most abundant methanogens and methanotrophs affiliated, respectively, to families Methanomassiliicoccaceae and Methylocystaceae. Our results demonstrated diverse microbial communities and provide valuable insights on microbial ecology in these extreme ecosystems.
  15. Too CC, Ong KS, Lee SM, Yule CM, Keller A
    Microbiol Resour Announc, 2018 Sep;7(12).
    PMID: 30533674 DOI: 10.1128/MRA.01083-18
    The bacterium Dyella sp. strain C9 was isolated from North Selangor Peat Swamp Forest, Malaysia, and studied using whole-genome sequencing. The putative genes involved in biogeochemical processes were annotated, and the genome sequence is publicly available in the NCBI database.
  16. Too CC, Ong KS, Ankenbrand MJ, Lee SM, Yule CM, Keller A
    Genome Announc, 2018 Jun 21;6(25).
    PMID: 29930066 DOI: 10.1128/genomeA.00561-18
    We report the draft genome sequence of a bacterial isolate, Paraburkholderia sp. strain C35, which was isolated from a Malaysian tropical peat swamp forest. The putative genes for the biogeochemical processes were annotated and are publicly available in the online databases.
  17. Too CC, Ong KS, Ankenbrand MJ, Lee SM, Yule CM, Keller A
    Genome Announc, 2018 Jun 21;6(25).
    PMID: 29930065 DOI: 10.1128/genomeA.00560-18
    We report here the draft genome of Klebsiella sp. strain C31, a bacterial isolate from the North Selangor peat swamp forest in Malaysia. The putative genes for the biogeochemical processes of the genome were annotated and investigated.
  18. Too CC, Ong KS, Lee SM, Yule CM, Keller A
    Genome Announc, 2018 Jun 21;6(25).
    PMID: 29930031 DOI: 10.1128/genomeA.00459-18
    We report here the draft genome sequences of a bacterial isolate, Dyella sp. strain C11, which was isolated from a Malaysian tropical peat swamp forest. The putative genes for the biogeochemical processes were annotated, and the genome was deposited in an online database.
  19. Ong KS, Aw YK, Lee LH, Yule CM, Cheow YL, Lee SM
    Front Microbiol, 2016;7:2046.
    PMID: 28066367 DOI: 10.3389/fmicb.2016.02046
    A novel Gram negative rod-shaped bacterium, designated strain MSh1T, was isolated from Southeast Pahang tropical peat swamp forest soil in Malaysia and characterized using a polyphasic taxonomy approach. The predominant cellular fatty acids (>10.0%) were C16:0 (31.7%), C17:0 cyclo (26.6%), and C19:0 cyclo ω8c (16.1%). The polar lipids detected were phosphatidylglycerol, phosphatidylethanolamine, and diphosphatidylglycerol. The predominant ubiquinone was Q-8. This revealed that strain MSh1T belongs to the genus Burkholderia. The type strain MSh1T can be differentiated from other Burkholderia cepacia complex (Bcc) species by phylogenetic analysis of 16S rRNA gene sequence, multilocus sequence analysis (MLSA), average nucleotide identity (ANI) and biochemical tests. DNA-DNA relatedness values between strain MSh1T and closely related type strains were below the 70% threshold value. Based on this polyphasic study of MSh1T, it can be concluded that this strain represents a novel species within the Bcc, for which the name Burkholderia paludis sp. nov. is proposed. The type strain is MSh1T (= DSM 100703T = MCCC 1K01245T). The dichloromethane extract of MSh1T exhibited antimicrobial activity against four Gram positive bacteria (Enterococcus faecalis ATCC 29212, E. faecalis ATCC 700802, Staphylococcus aureus ATCC 29213, S. aureus ATCC 700699) and a Gram negative bacteria (Escherichia coli ATCC 25922). Further purification work has led to the isolation of Compound 1, pyochelin. Pyochelin demonstrated antimicrobial activity against four S. aureus strains and three E. faecalis strains with MIC-values of 3.13 μg/ml and 6.26 μg/ml, respectively. SEM analysis showed that the cellular morphology of E. faecalis ATCC 700802 was not affected by pyochelin; suggesting that it might target the intracellular components. Pyochelin, a siderophore with antimicrobial activity might be useful in treating bacterial infections caused by S. aureus and E. faecalis, however further work has to be done.
  20. Goh CBS, Wong LW, Parimannan S, Rajandas H, Loke S, Croft L, et al.
    Int J Syst Evol Microbiol, 2020 Dec;70(12):6355-6363.
    PMID: 33146596 DOI: 10.1099/ijsem.0.004539
    A Gram-negative, filamentous aerobic bacterium designated as strain Mgbs1T was isolated on 12 April 2017 from the subsurface soil and leaf litter substrate at the base of a Koompassia malaccensis tree in a tropical peat swamp forest in the northern regions of the state of Selangor, Malaysia (3° 39' 04.7' N 101° 17' 43.7'' E). Phylogenetic analyses based on the full 16S rRNA sequence revealed that strain Mgbs1T belongs to the genus Chitinophaga with the greatest sequence similarity to Chitinophaga terrae KP01T (97.65 %), Chitinophaga jiangningensis DSM27406T (97.58 %), and Chitinophaga dinghuensis DHOC24T (97.17 %). The major fatty acids of strain Mgbs1T (>10 %) are iso-C15 : 0, C16 : 1 ω5c and iso-C17 : 0 3-OH while the predominant respiratory quinone is menaquinone-7. Strain Mgbs1T has a complete genome size of 8.03 Mb, with a G+C content of 48.5 mol%. The DNA-DNA hybridization (DDH) score between strain Mgbs1T and C. jiangningensis DSM27406T was 15.9 %, while in silico DDH values of strain Mgbs1T against C. dinghuensis DHOC24T and C. terrae KP01T were 20.0 and 19.10% respectively. Concurrently, Average Nucleotide Identity (ANI) scores between strain Mgbs1T against all three reference strains are 73.2 %. Based on the phenotypic, chemotaxonomic, and phylogenetic consensus, strain Mgbs1T represents a novel species of the genus Chitinophaga, for which the name Chitinophaga extrema sp. nov. is proposed (=DSM 108835T=JCM 33276T).
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links