Displaying all 3 publications

Abstract:
Sort:
  1. Deva JP, Ngeow YF, Zin T
    Indian J Ophthalmol, 2023 Jun;71(6):2443-2447.
    PMID: 37322657 DOI: 10.4103/IJO.IJO_2894_22
    PURPOSE: This case-control study aims to examine possible associations of VSX1 exon3 gene variants with the development of keratoconus (KC) in Malaysian patients.

    METHODS: A case-control study was done on 42 keratoconus cases, 127 family member controls, and 96 normal controls.

    RESULTS: Three gene variants, p.A182A, p.P237P, and p.R217H showed significant associations with keratoconus (P < 0.05). While p.A182A and p.P227P were more prevalent than in the family and normal controls (OR 3.14-4.05), the reverse was observed with p.R217H (OR 0.086-1.59). With Haploview analysis, p.A182A and p.P237P were shown to be in linkage disequilibrium (LD) (LOD (logarithm of the odds score) score of 2.0, r2 of 0.957, and 95% confidence interval (CI) of 0.96-1.00).

    CONCLUSION: The study results suggest that the p.A182A and p.P237P variants could have contributed to the development of keratoconus in some Malaysians and that these two variants are likely to be co-inherited. In contrast, the p.R217H variant appeared to confer some protection against the development of keratoconus.

  2. Tan JL, Ng KP, Ong CS, Ngeow YF
    Front Microbiol, 2017;8:2042.
    PMID: 29109707 DOI: 10.3389/fmicb.2017.02042
    Mycobacterium abscessus, a rapid-growing non-tuberculous mycobacterium, has been the cause of sporadic and outbreak infections world-wide. The subspecies in M. abscessus complex (M. abscessus, M. massiliense, and M. bolletii) are associated with different biologic and pathogenic characteristics and are known to be among the most frequently isolated opportunistic pathogens from clinical material. To date, the evolutionary forces that could have contributed to these biological and clinical differences are still unclear. We compared genome data from 243 M. abscessus strains downloaded from the NCBI ftp Refseq database to understand how the microevolutionary processes of homologous recombination and positive selection influenced the diversification of the M. abscessus complex at the subspecies level. The three subspecies are clearly separated in the Minimum Spanning Tree. Their MUMi-based genomic distances support the separation of M. massiliense and M. bolletii into two subspecies. Maximum Likelihood analysis through dN/dS (the ratio of number of non-synonymous substitutions per non-synonymous site, to the number of synonymous substitutions per synonymous site) identified distinct genes in each subspecies that could have been affected by positive selection during evolution. The results of genome-wide alignment based on concatenated locally-collinear blocks suggest that (a) recombination has affected the M. abscessus complex more than mutation and positive selection; (b) recombination occurred more frequently in M. massiliense than in the other two subspecies; and (c) the recombined segments in the three subspecies have come from different intra-species and inter-species origins. The results lead to the identification of possible gene sets that could have been responsible for the subspecies-specific features and suggest independent evolution among the three subspecies, with recombination playing a more significant role than positive selection in the diversification among members in this complex.
  3. Yan S, Ren T, Wan Mahari WA, Feng H, Xu C, Yun F, et al.
    Sci Total Environ, 2021 Aug 24;802:149835.
    PMID: 34461468 DOI: 10.1016/j.scitotenv.2021.149835
    Soil carbon supplementation is known to stimulate plant growth by improving soil fertility and plant nutrient uptake. However, the underlying process and chemical mechanism that could explain the interrelationship between soil carbon supplementation, soil micro-ecology, and the growth and quality of plant remain unclear. In this study, we investigated the influence and mechanism of soil carbon supplementation on the bacterial community, chemical cycling, mineral nutrition absorption, growth and properties of tobacco leaves. The soil carbon supplementation increased amino acid, carbohydrates, chemical energy metabolism, and bacterial richness in the soil. This led to increased content of sugar (23.75%), starch (13.25%), and chlorophyll (10.56%) in tobacco leaves. Linear discriminant analysis revealed 49 key phylotypes and significant increment of some of the Plant Growth-Promoting Rhizobacteria (PGPR) genera (Bacillus, Novosphingobium, Pseudomonas, Sphingomonas) in the rhizosphere, which can influence the tobacco growth. Partial Least Squares Path Modeling (PLS-PM) showed that soil carbon supplementation positively affected the sugar and starch contents in tobacco leaves by possibly altering the photosynthesis pathway towards increasing the aroma of the leaves, thus contributing to enhanced tobacco flavor. These findings are useful for understanding the influence of soil carbon supplementation on bacterial community for improving the yields and quality of tobacco in industrial plantation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links