Displaying all 6 publications

Abstract:
Sort:
  1. Zahoor F, Azni Zulkifli TZ, Khanday FA
    Nanoscale Res Lett, 2020 Apr 22;15(1):90.
    PMID: 32323059 DOI: 10.1186/s11671-020-03299-9
    In this manuscript, recent progress in the area of resistive random access memory (RRAM) technology which is considered one of the most standout emerging memory technologies owing to its high speed, low cost, enhanced storage density, potential applications in various fields, and excellent scalability is comprehensively reviewed. First, a brief overview of the field of emerging memory technologies is provided. The material properties, resistance switching mechanism, and electrical characteristics of RRAM are discussed. Also, various issues such as endurance, retention, uniformity, and the effect of operating temperature and random telegraph noise (RTN) are elaborated. A discussion on multilevel cell (MLC) storage capability of RRAM, which is attractive for achieving increased storage density and low cost is presented. Different operation schemes to achieve reliable MLC operation along with their physical mechanisms have been provided. In addition, an elaborate description of switching methodologies and current voltage relationships for various popular RRAM models is covered in this work. The prospective applications of RRAM to various fields such as security, neuromorphic computing, and non-volatile logic systems are addressed briefly. The present review article concludes with the discussion on the challenges and future prospects of the RRAM.
  2. Zahoor F, Hussin FA, Khanday FA, Ahmad MR, Mohd Nawi I
    Micromachines (Basel), 2021 Oct 21;12(11).
    PMID: 34832702 DOI: 10.3390/mi12111288
    Due to the difficulties associated with scaling of silicon transistors, various technologies beyond binary logic processing are actively being investigated. Ternary logic circuit implementation with carbon nanotube field effect transistors (CNTFETs) and resistive random access memory (RRAM) integration is considered as a possible technology option. CNTFETs are currently being preferred for implementing ternary circuits due to their desirable multiple threshold voltage and geometry-dependent properties, whereas the RRAM is used due to its multilevel cell capability which enables storage of multiple resistance states within a single cell. This article presents the 2-trit arithmetic logic unit (ALU) design using CNTFETs and RRAM as the design elements. The proposed ALU incorporates a transmission gate block, a function select block, and various ternary function processing modules. The ALU design optimization is achieved by introducing a controlled ternary adder-subtractor module instead of separate adder and subtractor circuits. The simulations are analyzed and validated using Synopsis HSPICE simulation software with standard 32 nm CNTFET technology under different operating conditions (supply voltages) to test the robustness of the designs. The simulation results indicate that the proposed CNTFET-RRAM integration enables the compact circuit realization with good robustness. Moreover, due to the addition of RRAM as circuit element, the proposed ALU has the advantage of non-volatility.
  3. Shukar S, Zahoor F, Omer S, Awan SE, Yang C, Fang Y
    Int J Environ Res Public Health, 2022 Dec 06;19(23).
    PMID: 36498446 DOI: 10.3390/ijerph192316373
    This study aimed to examine the current situation of anti-cancer drug shortages in Pakistan, namely its determinants, impacts, adopted mitigation strategies, and proposed solutions. Qualitative semi-structured, in-depth interviews were conducted with 25 pharmacists in oncology hospitals in Pakistan from August to October 2021. Data were collected in person and online, recorded, and subjected to inductive thematic analysis after being transcribed verbatim. Most participants experienced anti-cancer drug shortages that increased during the pandemic. Etoposide, paclitaxel, vincristine, dacarbazine, and methotrexate were frequently short. Important causes included the compromised role of regulatory authorities, lack of local production, and inventory mismanagement. The impacts were delayed/suboptimal treatment and out-of-pocket costs for patients, patients' prioritization, increased workload, negative work environment, and patients' trust issues for pharmacists. The participants proposed that a cautious regulator's role is needed to revise policies for all stakeholders and support all stakeholders financially at their level to increase access to these medicines. Based on the outcomes, it is clear that anti-cancer medicine shortages are a current issue in Pakistan. Governmental authorities need to play a role in revising policies for all levels of the drug supply chain and promoting local production of these drugs. Stakeholders should also collaborate and manage inventory.
  4. Zahoor F, Hussin FA, Isyaku UB, Gupta S, Khanday FA, Chattopadhyay A, et al.
    Discov Nano, 2023 Mar 09;18(1):36.
    PMID: 37382679 DOI: 10.1186/s11671-023-03775-y
    The modern-day computing technologies are continuously undergoing a rapid changing landscape; thus, the demands of new memory types are growing that will be fast, energy efficient and durable. The limited scaling capabilities of the conventional memory technologies are pushing the limits of data-intense applications beyond the scope of silicon-based complementary metal oxide semiconductors (CMOS). Resistive random access memory (RRAM) is one of the most suitable emerging memory technologies candidates that have demonstrated potential to replace state-of-the-art integrated electronic devices for advanced computing and digital and analog circuit applications including neuromorphic networks. RRAM has grown in prominence in the recent years due to its simple structure, long retention, high operating speed, ultra-low-power operation capabilities, ability to scale to lower dimensions without affecting the device performance and the possibility of three-dimensional integration for high-density applications. Over the past few years, research has shown RRAM as one of the most suitable candidates for designing efficient, intelligent and secure computing system in the post-CMOS era. In this manuscript, the journey and the device engineering of RRAM with a special focus on the resistive switching mechanism are detailed. This review also focuses on the RRAM based on two-dimensional (2D) materials, as 2D materials offer unique electrical, chemical, mechanical and physical properties owing to their ultrathin, flexible and multilayer structure. Finally, the applications of RRAM in the field of neuromorphic computing are presented.
  5. Zahoor F, Nisar A, Bature UI, Abbas H, Bashir F, Chattopadhyay A, et al.
    Nanoscale Adv, 2024 Sep 09.
    PMID: 39263252 DOI: 10.1039/d4na00158c
    The rapid advancement of new technologies has resulted in a surge of data, while conventional computers are nearing their computational limits. The prevalent von Neumann architecture, where processing and storage units operate independently, faces challenges such as data migration through buses, leading to decreased computing speed and increased energy loss. Ongoing research aims to enhance computing capabilities through the development of innovative chips and the adoption of new system architectures. One noteworthy advancement is Resistive Random Access Memory (RRAM), an emerging memory technology. RRAM can alter its resistance through electrical signals at both ends, retaining its state even after power-down. This technology holds promise in various areas, including logic computing, neural networks, brain-like computing, and integrated technologies combining sensing, storage, and computing. These cutting-edge technologies offer the potential to overcome the performance limitations of traditional architectures, significantly boosting computing power. This discussion explores the physical mechanisms, device structure, performance characteristics, and applications of RRAM devices. Additionally, we delve into the potential future adoption of these technologies at an industrial scale, along with prospects and upcoming research directions.
  6. Ba Hashwan SS, Khir MHM, Nawi IM, Ahmad MR, Hanif M, Zahoor F, et al.
    Nanoscale Res Lett, 2023 Feb 27;18(1):25.
    PMID: 36847870 DOI: 10.1186/s11671-023-03779-8
    Piezoelectric microelectromechanical system (piezo-MEMS)-based mass sensors including the piezoelectric microcantilevers, surface acoustic waves (SAW), quartz crystal microbalance (QCM), piezoelectric micromachined ultrasonic transducer (PMUT), and film bulk acoustic wave resonators (FBAR) are highlighted as suitable candidates for highly sensitive gas detection application. This paper presents the piezo-MEMS gas sensors' characteristics such as their miniaturized structure, the capability of integration with readout circuit, and fabrication feasibility using multiuser technologies. The development of the piezoelectric MEMS gas sensors is investigated for the application of low-level concentration gas molecules detection. In this work, the various types of gas sensors based on piezoelectricity are investigated extensively including their operating principle, besides their material parameters as well as the critical design parameters, the device structures, and their sensing materials including the polymers, carbon, metal-organic framework, and graphene.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links