Displaying all 5 publications

Abstract:
Sort:
  1. Teh LK, Zahri MK, Zakaria ZA, Ismail R, Salleh MZ
    J Clin Pharm Ther, 2010 Dec;35(6):723-8.
    PMID: 21054465 DOI: 10.1111/j.1365-2710.2009.01146.x
    CYP2C8 is involved in the cytochrome P450 (CYP) epoxygenase pathway. Arachidonic acid metabolites such as epoxyeicosatrienenoic acids and hydroxyeicosatetrenoic acids, produced may have a role in hypertension. We aimed to develop a medium through-put method for screening samples of known and new mutations of CYP2C8 using denaturing high performance liquid chromatography (DHPLC).
  2. Al-Kafaween MA, Al-Jamal HAN, Hilmi ABM, Elsahoryi NA, Jaffar N, Zahri MK
    Iran J Microbiol, 2020 Dec;12(6):565-576.
    PMID: 33613911 DOI: 10.18502/ijm.v12i6.5031
    BACKGROUND AND OBJECTIVES: Tualang honey (TH) is a Malaysian multifloral jungle honey. In recent years, there has been a marked increase in the number of studies published in medical databases regarding its potential health benefits. The study aimed to investigate the effect of TH against Pseudomonas aeruginosa and Streptococcus pyogenes.

    MATERIALS AND METHODS: The effect of TH on both bacteria was investigated using MIC, MBC, growth curve, time-kill curve, scanning electron microscopy (SEM) and RT-qPCR.

    RESULTS: The MIC of TH against P. aeruginosa and S. pyogenes was 18.5% (w/v) and 13% (w/v) respectively and MBC was 25% (w/v) for both bacteria. Spectrophotometric readings of at least 90% inhibition yielded MIC90 values of TH, 18.5% (w/v) and 15% (w/v) for P. aeruginosa and S. pyogenes respectively. A time-kill curve demonstrated a bactericidal with a 4-log reduction estimated within 8 hours. Using SEM, loss of structural integrity and marked changes in cell shape were observed. RT-qPCR analysis showed that TH reduced the pattern of gene expression in both bacteria, with a trend toward reduced expression of the virulence genes of interest.

    CONCLUSION: This study suggests that TH could potentially be used as an alternative therapeutic agent for microbial infection particularly against these two organisms.

  3. Al-Khateeb A, Zahri MK, Mohamed MS, Sasongko TH, Ibrahim S, Yusof Z, et al.
    BMC Med Genet, 2011;12:40.
    PMID: 21418584 DOI: 10.1186/1471-2350-12-40
    Familial hypercholesterolemia is a genetic disorder mainly caused by defects in the low-density lipoprotein receptor gene. Few and limited analyses of familial hypercholesterolemia have been performed in Malaysia, and the underlying mutations therefore remain largely unknown.We studied a group of 154 unrelated FH patients from a northern area of Malaysia (Kelantan). The promoter region and exons 2-15 of the LDLR gene were screened by denaturing high-performance liquid chromatography to detect short deletions and nucleotide substitutions, and by multiplex ligation-dependent probe amplification to detect large rearrangements.
  4. Hatin WI, Nur-Shafawati AR, Zahri MK, Xu S, Jin L, Tan SG, et al.
    PLoS One, 2011;6(4):e18312.
    PMID: 21483678 DOI: 10.1371/journal.pone.0018312
    Patterns of modern human population structure are helpful in understanding the history of human migration and admixture. We conducted a study on genetic structure of the Malay population in Malaysia, using 54,794 genome-wide single nucleotide polymorphism genotype data generated in four Malay sub-ethnic groups in peninsular Malaysia (Melayu Kelantan, Melayu Minang, Melayu Jawa and Melayu Bugis). To the best of our knowledge this is the first study conducted on these four Malay sub-ethnic groups and the analysis of genotype data of these four groups were compiled together with 11 other populations' genotype data from Indonesia, China, India, Africa and indigenous populations in Peninsular Malaysia obtained from the Pan-Asian SNP database. The phylogeny of populations showed that all of the four Malay sub-ethnic groups are separated into at least three different clusters. The Melayu Jawa, Melayu Bugis and Melayu Minang have a very close genetic relationship with Indonesian populations indicating a common ancestral history, while the Melayu Kelantan formed a distinct group on the tree indicating that they are genetically different from the other Malay sub-ethnic groups. We have detected genetic structuring among the Malay populations and this could possibly be accounted for by their different historical origins. Our results provide information of the genetic differentiation between these populations and a valuable insight into the origins of the Malay sub-ethnic groups in Peninsular Malaysia.
  5. Marini M, Salmi AA, Watihayati MS, SMardziah MD, Zahri MK, Hoh BP, et al.
    Med J Malaysia, 2008 Mar;63(1):31-4.
    PMID: 18935728 MyJurnal
    Duchenne Muscular Dystrophy (DMD) is an X-linked recessive genetic disorder characterized by rapidly progressive muscle weakness. The disease is caused by deletion, duplication or point mutation of the dystrophin gene, located on the X chromosome (Xp21). Deletion accounts for 60% of the mutations within the 79 exons of the dystrophin gene. Seven exons (43, 44, 45, 46, 49, 50, and 51) were found to be most commonly deleted among the Asian patients. To detect the frequency of deletion of these 7 exons in Malaysian DMD patients, we carried out a molecular genetic analysis in 20 Malaysian DMD patients. The mean age of initial presentation was 60 months (SD 32 months, range 5-120 months). Fourteen patients were found to have deletion of at least one of the seven exons. The remaining six patients did not show any deletion on the tested exons. Deletions of exons 49, 50 and 51 were the most frequent (71.43%) and appear to be the hot spots in our cohort of patients.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links