Displaying all 4 publications

Abstract:
Sort:
  1. Zainal Abidin DH, Mustaffa S, Rahim MA, Nair DM, Md Naim D, Mohd Nor SA
    Mitochondrial DNA, 2016;27(1):647-58.
    PMID: 24786018 DOI: 10.3109/19401736.2014.913137
    Mitochondrial cytochrome oxidase subunit I (COI) gene was utilized to assess the population genetics of the commercially important black scar oyster, Crassostrea iredalei among 11 populations throughout the west and east coasts Peninsular Malaysia and Sabah (Malaysian Borneo). Overall, populations of C. iredalei demonstrated low nucleotide diversity π (0.000-0.004) and low-to-high haplotype diversity h (0.000-0.795) levels. Genetic structuring was detected between the Peninsular Malaysia and Sabah populations as revealed by the FST analysis. However, the COI gene analyses showed minimal and non-significant (p > 0.05) population differentiation within the east and west coasts Peninsular Malaysia and Sabah regions. This was attributed to both high larval dispersal along the east and west coasts and human-driven spat translocation between the two coastlines due to C. iredalei cultivation practices. Phylogeographic relationships inferences were also conducted to further support these hypotheses. The neutrality and mismatch distribution analyses suggested that C. iredalei had experienced a/several bottleneck event(s), followed by population expansion. The molecular information obtained from this study could be incorporated in a pragmatic aquaculture management strategy of wild broodstock and the hatchery lines of C. iredalei in Malaysia.
  2. Jamaludin NA, Mohd-Arshaad W, Mohd Akib NA, Zainal Abidin DH, Nghia NV, Nor SM
    PMID: 32744461 DOI: 10.1080/24701394.2020.1799996
    The Japanese scad Decapterus maruadsi (Carangidae) is an economically important marine species in Asia but its exploitation shows signs of overfishing. To document its stock structure, a population genetic and phylogeographic study of several populations of this species from the central part of the Indo-West Pacific region was conducted using the mitochondrial cytochrome b gene. Genetic homogeneity within the Sundaland region's population, including Rosario (the Philippines) and Ranong (Andaman Sea) populations was revealed with low nucleotide diversity (π = 0.001-0.003) but high haplotype diversity (h = 0.503-0.822). In contrast, a clear genetic structure was observed between this group and the northern Vietnam populations as revealed by FST, AMOVA and SAMOVA, while the central Vietnam population of Khanh Hoa is an admixed group between the two differentiated regional populations. The neutrality and mismatch distribution analyses supported a demographic expansion of D. maruadsi in between last Pleistocene to early Holocene period which influenced present day distribution pattern. Contemporary factors such as oceanic currents and different life history traits are also believed to play significant roles in the observed population structure and biogeographical pattern. Based on these results, recommendations on how stocks of the Japanese scad should be managed are offered.
  3. Zainal Abidin DH, Mohd Nor SA, Lavoué S, A Rahim M, Mohammed Akib NA
    Sci Rep, 2022 Sep 29;12(1):16346.
    PMID: 36175455 DOI: 10.1038/s41598-022-19954-3
    Biodiversity surveys are crucial for monitoring the status of threatened aquatic ecosystems, such as tropical estuaries and mangroves. Conventional monitoring methods are intrusive, time-consuming, substantially expensive, and often provide only rough estimates in complex habitats. An advanced monitoring approach, environmental DNA (eDNA) metabarcoding, is promising, although only few applications in tropical mangrove estuaries have been reported. In this study, we explore the advantages and limitations of an eDNA metabarcoding survey on the fish community of the Merbok Estuary (Peninsular Malaysia). COI and 12S eDNA metabarcoding assays collectively detected 178 species from 127 genera, 68 families, and 25 orders. Using this approach, significantly more species have been detected in the Merbok Estuary over the past decade (2010-2019) than in conventional surveys, including several species of conservation importance. However, we highlight three limitations: (1) in the absence of a comprehensive reference database the identities of several species are unresolved; (2) some of the previously documented specimen-based diversity was not captured by the current method, perhaps as a consequence of PCR primer specificity, and (3) the detection of non-resident species-stenohaline freshwater taxa (e.g., cyprinids, channids, osphronemids) and marine coral reef taxa (e.g., holocentrids, some syngnathids and sharks), not known to frequent estuaries, leading to the supposition that their DNA have drifted into the estuary through water movements. The community analysis revealed that fish diversity along the Merbok Estuary is not homogenous, with the upstream more diverse than further downstream. This could be due to the different landscapes or degree of anthropogenic influences along the estuary. In summary, we demonstrated the practicality of eDNA metabarcoding in assessing fish community and structure within a complex and rich tropical environment within a short sampling period. However, some limitations need to be considered and addressed to fully exploit the efficacy of this approach.
  4. Zainal Abidin DH, Mohd Nor SA, Lavoué S, A Rahim M, Jamaludin NA, Mohammed Akib NA
    Sci Rep, 2021 Sep 07;11(1):17800.
    PMID: 34493747 DOI: 10.1038/s41598-021-97324-1
    The Merbok Estuary comprises one of the largest remaining mangrove forests in Peninsular Malaysia. Its value is significant as it provides important services to local and global communities. It also offers a unique opportunity to study the structure and functioning of mangrove ecosystems. However, its biodiversity is still partially inventoried, limiting its research value. A recent checklist based on morphological examination, reported 138 fish species residing, frequenting or subject to entering the Merbok Estuary. In this work, we reassessed the fish diversity of the Merbok Estuary by DNA barcoding 350 specimens assignable to 134 species initially identified based on morphology. Our results consistently revealed the presence of 139 Molecular Operational Taxonomic Units (MOTUs). 123 of them are congruent with morphology-based species delimitation (one species = one MOTU). In two cases, two morphological species share the same MOTU (two species = one MOTU), while we unveiled cryptic diversity (i.e. COI-based genetic variability > 2%) within seven other species (one species = two MOTUs), calling for further taxonomic investigations. This study provides a comprehensive core-list of fish taxa in Merbok Estuary, demonstrating the advantages of combining morphological and molecular evidence to describe diverse but still poorly studied tropical fish communities. It also delivers a large DNA reference collection for brackish fishes occurring in this region which will facilitate further biodiversity-oriented research studies and management activities.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links