Displaying all 10 publications

Abstract:
Sort:
  1. Zargar M, Ahmadinia E, Asli H, Karim MR
    J Hazard Mater, 2012 Sep 30;233-234:254-8.
    PMID: 22818590 DOI: 10.1016/j.jhazmat.2012.06.021
    The ageing of the bitumen during storage, mixing, transport and laying on the road, as well as in service life, are the most important problems presented by the use of bitumen in pavements. This paper investigates the possibility of using waste cooking oil (WCO), which is a waste material that pollutes landfills and rivers, as an alternative natural rejuvenating agent for aged bitumen to a condition that resembles the original bitumen. With this target, the physical and chemical properties of the original bitumen, aged bitumen and rejuvenated bitumen were measured and compared by the bitumen binder tests - softening point, penetration, Brookfield viscosity, dynamic shear rheometer and Fourier transform infrared spectroscopy. In addition, the behaviour of the WCO rejuvenated bitumen is investigated and compared with virgin bitumen after using the rolling thin film oven ageing process. In general, the results showed that using 3-4% of WCO the aged bitumen group 40/50 was rejuvenated to a condition that closely resembled the physical, rheological properties of the original bitumen (80/100), however, there was a difference in the tendency to ageing between the WCO rejuvenated bitumen and the virgin bitumen during mixing, transport and laying on the road.
  2. Shameli K, Bin Ahmad M, Zargar M, Yunus WM, Ibrahim NA, Shabanzadeh P, et al.
    Int J Nanomedicine, 2011;6:271-84.
    PMID: 21499424 DOI: 10.2147/IJN.S16043
    Silver nanoparticles (AgNPs) of a small size were successfully synthesized using the wet chemical reduction method into the lamellar space layer of montmorillonite/chitosan (MMT/Cts) as an organomodified mineral solid support in the absence of any heat treatment. AgNO3, MMT, Cts, and NaBH4 were used as the silver precursor, the solid support, the natural polymeric stabilizer, and the chemical reduction agent, respectively. MMT was suspended in aqueous AgNO3/Cts solution. The interlamellar space limits were changed (d-spacing = 1.24-1.54 nm); therefore, AgNPs formed on the interlayer and external surface of MMT/Cts with d-average = 6.28-9.84 nm diameter. Characterizations were done using different methods, ie, ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence spectrometry, and Fourier transform infrared spectroscopy. Silver/montmorillonite/chitosan bionanocomposite (Ag/MMT/Cts BNC) systems were examined. The antibacterial activity of AgNPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria, ie, Escherichia coli, E. coli O157:H7, and Pseudomonas aeruginosa by the disc diffusion method using Mueller Hinton agar at different sizes of AgNPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biological research and biomedical applications, including surgical devices and drug delivery vehicles.
  3. Shameli K, Ahmad MB, Zargar M, Yunus WM, Rustaiyan A, Ibrahim NA
    Int J Nanomedicine, 2011;6:581-90.
    PMID: 21674015 DOI: 10.2147/IJN.S17112
    Silver nanoparticles (Ag NPs) were synthesized by the chemical reducing method in the external and interlamellar space of montmorillonite (MMT) as a solid support at room temperature. AgNO(3) and NaBH(4) were used as a silver precursor and reducing agent, respectively. The most favorable experimental conditions for synthesizing Ag NPs in the MMT are described in terms of the initial concentration of AgNO(3). The interlamellar space limits changed little (d-spacing = 1.24-1.47 nm); therefore, Ag NPs formed on the MMT suspension with d-average = 4.19-8.53 nm diameter. The Ag/MMT nanocomposites (NCs), formed from AgNO(3)/MMT suspension, were characterizations with different instruments, for example UV-visible, PXRD, TEM, SEM, EDXRF, FT-IR, and ICP-OES analyzer. The antibacterial activity of different sizes of Ag NPs in MMT were investigated against Gram-positive, ie, Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) and Gram-negative bacteria, ie, Escherichia coli, Escherichia coli O157:H7, and Klebsiella pneumoniae, by the disk diffusion method using Mueller-Hinton agar (MHA). The smaller Ag NPs were found to have significantly higher antibacterial activity. These results showed that Ag NPs can be used as effective growth inhibitors in different biological systems, making them applicable to medical applications.
  4. Shameli K, Ahmad MB, Zargar M, Yunus WM, Ibrahim NA
    Int J Nanomedicine, 2011;6:331-41.
    PMID: 21383858 DOI: 10.2147/IJN.S16964
    Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12-3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO(3). The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller-Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications.
  5. Zargar M, Hamid AA, Bakar FA, Shamsudin MN, Shameli K, Jahanshiri F, et al.
    Molecules, 2011 Aug 08;16(8):6667-76.
    PMID: 25134770 DOI: 10.3390/molecules16086667
    Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs) due to their multiple applications. One of the most important applications of Ag-NPs is their use as an anti-bacterial agent. The use of plants in the synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the biosynthesis of silver nanoparticles using Vitex negundo L. extract and its antimicrobial properties has been reported. The resulting silver particles are characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV-Visible (UV-Vis) spectroscopic techniques. The TEM study showed the formation of silver nanoparticles in the 10-30 nm range and average 18.2 nm in size. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc) structure. The silver nanoparticles showed the antimicrobial activity against Gram positive and Gram negative bacteria. Vitex negundo L. was found to display strong potential for the synthesis of silver nanoparticles as antimicrobial agents by rapid reduction of silver ions (Ag+ to Ag0).
  6. Ismail S, Jalilian FA, Talebpour AH, Zargar M, Shameli K, Sekawi Z, et al.
    Biomed Res Int, 2013;2013:696835.
    PMID: 23484141 DOI: 10.1155/2013/696835
    Allium hirtifolium Boiss. known as Persian shallot, is a spice used as a traditional medicine in Iran and, Mediterranean region. In this study, the chemical composition of the hydromethanolic extract of this plant was analyzed using GC/MS. The result showed that 9-hexadecenoic acid, 11,14-eicosadienoic acid, and n-hexadecanoic acid are the main constituents. The antibacterial activity of the shallot extract was also examined by disk diffusion and microdilution broth assays. It was demonstrated that Persian shallot hydromethanolic extract was effective against 10 different species of pathogenic bacteria including methicillin resistant Staphylococcus aureus (MRSA), methicillin sensitive Staphylococcus aureus (MSSA), Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Escherichia coli, Escherichia coli O157:H7, Salmonella typhimurium, Proteus mirabilis, and Klebsiella pneumoniae. Specifically, the minimum concentration of the extract which inhibited bacterial growth (MIC values) was 1.88 mg/mL for most of the gram-positive bacteria. This concentration was not much different from the concentration that was safe for mammalian cells (1.50 mg/mL) suggesting that the hydromethanolic extract of Persian shallot may be a safe and strong antibacterial agent.
  7. Shameli K, Ahmad MB, Zamanian A, Sangpour P, Shabanzadeh P, Abdollahi Y, et al.
    Int J Nanomedicine, 2012;7:5603-10.
    PMID: 23341739 DOI: 10.2147/IJN.S36786
    Green synthesis of noble metal nanoparticles is a vastly developing area of research. Metallic nanoparticles have received great attention from chemists, physicists, biologists, and engineers who wish to use them for the development of a new-generation of nanodevices. In this study, silver nanoparticles were biosynthesized from aqueous silver nitrate through a simple and eco-friendly route using Curcuma longa tuber-powder extracts, which acted as a reductant and stabilizer simultaneously. Characterizations of nanoparticles were done using different methods, which included ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray fluorescence spectrometry, and Fourier-transform infrared spectroscopy. The ultraviolet-visible spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 415 nm. Transmission electron microscopy showed that mean diameter and standard deviation for the formation of silver nanoparticles was 6.30 ± 2.64 nm. Powder X-ray diffraction showed that the particles are crystalline in nature, with a face-centered cubic structure. The most needed outcome of this work will be the development of value-added products from C. longa for biomedical and nanotechnology-based industries.
  8. Khoshnam M, Farahbakhsh J, Zargar M, Mohammad AW, Benamor A, Ang WL, et al.
    Sci Rep, 2021 Oct 13;11(1):20378.
    PMID: 34645890 DOI: 10.1038/s41598-021-99849-x
    In this study, hematite graphene oxide (αFe2O3-GO) powder nanocomposites and thin-film hematite graphene oxide (αFe2O3-GO) were synthesized for application in the removal of Rhodamine B (RhB) from textile wastewater. αFe2O3-GO nanomaterials were placed onto the FTO substrate to form a thin layer of nanocomposites. Different analysis including XRD, FTIR, Raman spectra, XPS, and FESEM were done to analyze the morphology, structure, and properties of the synthesized composites as well as the chemical interactions of αFe2O3 with GO. The photocatalytic performance of two synthesized composites was compared with different concentrations of αFe2O3-GO. The results showed that powder nanocomposites are more effective than thin-film composites for the removal of RhB dye. αFe2O3-GO-5% powder nanocomposites removed over 64% of dye while thin-film nanocomposites had less removal efficiencies with just under 47% removal rate. The reusability test was done for both materials in which αFe2O3-GO-5% powder nanocomposites removed a higher rate of dye (up to 63%) in more cycles (6 cycles).
  9. Lau WN, Mohammadi Nafchi A, Zargar M, Rozalli NHM, Mat Easa A
    Int J Biol Macromol, 2024 Mar;260(Pt 2):129589.
    PMID: 38296665 DOI: 10.1016/j.ijbiomac.2024.129589
    The aim of this work was to fabricate an intelligent film using sago starch incorporated with the natural source of anthocyanins from the Bauhinia Kockiana flower and use it to monitor the freshness of coconut milk. The films were developed using the casting method that included the addition of the different concentrations (0, 5, 10, 15 mg) of Bauhinia Kockiana extract (BKE) obtained using a solvent. The anthocyanin content of Bauhinia Kockiana was 262.17 ± 9.28 mg/100 g of fresh flowers. The spectral characteristics of BKE solutions, cross-section morphology, physiochemical, barrier, and mechanical properties, and the colour variations of films in different pH buffers were investigated. Films having the highest BKE concentration demonstrated the roughest structure and highest thickness (0.16 mm), moisture content (9.72 %), swelling index (435.83 %), water solubility (31.20 %), and elongation at break (262.32 %) compared to the other films. While monitoring the freshness of coconut milk for 16 h, BKE15 showed remarkable visible colour changes (from beige to dark brown), and the pH of coconut milk dropped from 6.21 to 4.56. Therefore, sago starch film incorporated with BKE has excellent potential to act as an intelligent pH film in monitoring the freshness of coconut milk.
  10. Shameli K, Ahmad MB, Yunus WM, Rustaiyan A, Ibrahim NA, Zargar M, et al.
    Int J Nanomedicine, 2010 Oct 22;5:875-87.
    PMID: 21116328 DOI: 10.2147/IJN.S13632
    In this study, silver nanoparticles (Ag-NPs) were synthesized using a green physical synthetic route into the lamellar space of montmorillonite (MMT)/chitosan (Cts) utilizing the ultraviolet (UV) irradiation reduction method in the absence of any reducing agent or heat treatment. Cts, MMT, and AgNO(3) were used as the natural polymeric stabilizer, solid support, and silver precursor, respectively. The properties of Ag/MMT/Cts bionanocomposites (BNCs) were studied as the function of UV irradiation times. UV irradiation disintegrated the Ag-NPs into smaller sizes until a relatively stable size and size distribution were achieved. Meanwhile, the crystalline structure and d-spacing of the MMT interlayer, average size and size distribution, surface morphology, elemental signal peaks, functional groups, and surface plasmon resonance of Ag/MMT/Cts BNCs were determined by powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, Fourier transform infrared, and UV-visible spectroscopy. The antibacterial activity of Ag-NPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria (ie, Escherichia coli) by the disk diffusion method on Muller-Hinton Agar at different sizes of Ag-NPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biologic research and biomedical applications, such as surgical devices and drug delivery vehicles.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links