RESULTS: Some taxa in China, Indochina, the Malay Peninsula, and the Philippines are morphologically identical to the Borneo taxon except in the number of calyx lobes, but differ by several distinctive characters from other well-distinguished species in the region. Studies of dried herbarium specimens, augmented by photographic images of different stages of fresh flowering material and a scrutiny of available descriptions confirmed that the calyx has two primary lobes in the bud that may separate into 3-5 portions, giving a variable number of apparent lobes in specimen material collected at different localities. This new scrutiny of the calyx also permitted an improved description of the calyx differences that separate Christisonia and the closely related Aeginetia, which have not been clearly elucidated in the past.
CONCLUSIONS: Christisonia scortechinii Prain (Orobanchaceae), the only species that was described as having an initially spathaceous calyx among species of this root-parasitic genus, is newly recorded for Borneo (including Kinabalu Park, where its presence has been overlooked). The range of the species in mainland Southeast Asia, previously extended from Peninsular Malaysia to Thailand and Vietnam, is here further extended to Laos and China. Christisonia wightii Elmer (relevant to the Philippines) and C. sinensis Beck (China) are reduced to synonymy.
RESULTS: A distinctive new species of Pittosporum (P. peridoticola J.B.Sugau and Ent, sp. nov.) was discovered on Mount Tambuyukon in the north of Kinabalu Park during ecological fieldwork. The diagnostic morphological characters of this taxon are discussed and information about the habitat in which it grows is provided. The soil chemistry in the rooting zone of P. peridoticola has high magnesium to calcium quotients, high extractable nickel and manganese concentrations, but low potassium and phosphorus concentrations, as is typical for ultramafic soils. Analysis of foliar samples of various Pittosporum-species originating from ultramafic and non-ultramafic soils showed a comparable foliar elemental stoichiometry that is suggestive of 'Excluder-type' ecophysiology.
CONCLUSION: Pittosporum peridoticola is an ultramafic obligate species restricted to Kinabalu Park with only two known populations within the boundaries of the protected area. It is vulnerable to any future stochastic landscape disturbance events, such as forest fires or severe droughts, and therefore its conservation status is 'Near Threatened'.
METHODS: We collected foliar samples (n = 1533) comprising 90 families, 198 genera and 495 plant species from ultramafic soils, further foliar samples (n = 177) comprising 45 families, 80 genera and 120 species from non-ultramafic soils and corresponding soil samples (n = 393 from ultramafic soils and n = 66 from non-ultramafic soils) from Kinabalu Park (Sabah, Malaysia). The data were geographically (Kinabalu Park) and edaphically (ultramafic soils) constrained. The inclusion of a relatively high proportion (approx. 14 %) of samples from hyperaccumulator species [with foliar concentrations of aluminium and nickel (Ni) >1000 μg g-1, cobalt, copper, chromium and zinc >300 μg g-1 or manganese (Mn) >10 mg g-1] allowed for hypothesis testing.
KEY RESULTS: Frequency distribution graphs for most elements [calcium (Ca), magnesium (Mg) and phosphorus (P)] were unimodal, although some were skewed left (Mg and Mn). The Ni frequency distribution was bimodal and the separation point for the two modes was between 250 and 850 μg g-1.
CONCLUSIONS: Accounting for statistical probability, the established empirical threshold value (>1000 μg g-1) remains appropriate. The two discrete modes for Ni indicate ecophysiologically distinct behaviour in plants growing in similar soils. This response is in contrast to Mn, which forms the tail of a continuous (approximately log-normal) distribution, suggestive of an extension of normal physiological processes.
RESULTS: One of the most promising species globally for agromining, is the here newly described species Phyllanthus rufuschaneyi. This species can be classified in subgenus Gomphidium on account of its staminate nectar disc and pistillate entire style and represents the most western species of this diverse group. The flower structure indicates that this species is probably pollinated by Epicephala moths.
CONCLUSIONS: Phyllanthus rufuschaneyi is an extremely rare taxon in the wild, restricted to Lompoyou Hill near Kinabalu Park in Sabah, Malaysia. Its utilization in agromining will be a mechanism for conservation of the taxon, and highlights the importance of habitat and germplasm preservation if rare species are to be used in novel green technologies.
METHODS: We examined how isotopic enrichment varied in the diverse genus Nepenthes, among species producing pitchers for invertebrate capture and species exhibiting mutualisms for the collection of mammal excreta. Enrichment factors were calculated from δ15N and δ13C values from eight Nepenthes species and naturally occurring hybrids along with co-occurring reference (non-carnivorous) plants from three mountain massifs in Borneo: Mount Kinabalu, Mount Tambuyukon and Mount Trus Madi.
RESULTS: All Nepenthes examined, except N. edwardsiana, were significantly enriched in 15N compared to co-occurring non-carnivorous plants, and 15N enrichment was more than two-fold higher in species with adaptations for the collection of mammal excreta compared with other Nepenthes.
CONCLUSIONS: The collection of mammal faeces clearly represents a highly effective strategy for heterotrophic nitrogen gain in Nepenthes. Species with adaptations for capturing mammal excreta occur exclusively at high elevation (i.e. are typically summit-occurring) where previous studies suggest invertebrate prey are less abundant and less frequently captured. As such, we propose this strategy may maximize nutritional return by specializing towards ensuring the collection and retention of few but higher-value N sources in environments where invertebrate prey may be scarce.
RESULTS: We found enrichment in heavy Zn isotopes in the topsoil (δ66Zn 0.13 ‰) relative to deep soil (δ66Zn -0.15 ‰) and bedrock (δ66Zn -0.90 ‰). This finding suggests that both weathering and organic matter influenced the Zn isotope pattern in the soil-plant system, with leaf litter cycling contributing significantly to enriched heavier Zn in topsoil. Within the plant, the roots were enriched in heavy Zn isotopes (δ66Zn ~ 0.60 ‰) compared to mature leaves (δ66Zn ~ 0.30 ‰), which suggests highly expressed membrane transporters in these Dichapetalum subspecies preferentially transporting lighter Zn isotopes during root-to-shoot translocation. The shoots, mature leaves and phloem tissues were enriched in heavy Zn isotopes (δ66Zn 0.34-0.70 ‰) relative to young leaves (δ66Zn 0.25 ‰). Thisindicates that phloem sources are enriched in heavy Zn isotopes relative to phloem sinks, likely because of apoplastic retention and compartmentalization in the Dichapetalum subspecies.
CONCLUSIONS: The findings of this study reveal Zn cycling in the rock-soil-plant continuum within the natural habitat of Zn hyperaccumulating subspecies of Dichapetalum gelonioides from Malaysian Borneo. This study broadens our understanding of the role of a tropical woody Zn hyperaccumulator plant in local Zn cycling, and highlights the important role of leaf litter recycling in the topsoil Zn budget. Within the plant, phloem plays key role in Zn accumulation and redistribution during growth and development. This study provides an improved understanding of the fate and behaviour of Zn in hyperaccumulator soil-plant systems, and these insights may be applied in the biofortification of crops with Zn.