Displaying all 7 publications

Abstract:
Sort:
  1. Ismail FS, Mansor S
    J Med Imaging Radiat Sci, 2019 09;50(3):449-453.
    PMID: 31320272 DOI: 10.1016/j.jmir.2019.05.007
    BACKGROUND: The aim of this study was to validate the quantitative accuracy of single photon emission computed tomography with computed tomography (SPECT/CT) images in cardiac phantom studies. The study was performed by assessing the effect of resolution recovery (RR) when using half-time of imaging acquisition in cardiac phantom.

    METHODS: The SPECT/CT images of the anthropomorphic phantom with a cardiac insert, liver, lung, and spine were acquired using the GE Discovery (NM/CT 670) SPECT/CT system. Different concentration activity ratios for different organ (10:10:1:0, cardiac:liver:background:lung) regions were acquired by using full- and half-time protocols for 643 and 1283 voxel sizes that were reconstructed using filtered back projection (FBP) method and 3D ordered subset expectation maximization (3D-OSEM). Attenuation correction and scatter correction were applied to both reconstructions, whereas the RR only can be applied for 3D-OSEM. The data were analyzed and reported in terms of absolute recovery coefficient percentage between the cardiac insert and background activity concentration. Another parameter used to assess the quantitative accuracy for defect region was the relative error percentage.

    RESULTS: The result of recovery coefficient percentage shows that the 3D-OSEM reconstruction with the RR gives the highest percentage estimation accuracy of 70% of activity recovery in the cardiac phantom wall compared with FBP (10.6%). The relative error percentage for reconstructed SPECT/CT images using 3D-OSEM reconstruction with RR shows the least error compared with FBP (21% vs. 45.1%) both in the full-and half-time acquisition of images with a larger number of matrix size used.

    CONCLUSIONS: 3D-OSEM reconstruction with the RR is beneficial in giving better quantitative evaluation with a good resolution myocardial perfusion image. To accomplish this, a larger matrix size is required for 3D-OSEM reconstruction with the RR and it demonstrated an improvement in image resolution and increased quantitative accuracy of the final reconstructed SPECT/CT images.

  2. Velo P, Zakaria A
    J Med Imaging Radiat Sci, 2017 Mar;48(1):39-42.
    PMID: 31047208 DOI: 10.1016/j.jmir.2016.10.010
    It is important to monitor the spatial resolution of a gamma camera on a weekly basis to acquire medical images with accurate quantitative information. A simple and fast computer program with a graphical user interface to analyze spatial resolution was successfully developed using MATLAB. The results were compared with those obtained from the standard processing system available in our gamma camera. The spatial resolution calculated using MATLAB was 1.24% lower than using the standard processing system. The developed program is cost effective, faster, and provides an easy platform for the physicists and technologists to analyze the spatial resolution based on the image of the line source.
  3. Velo P, Zakaria A
    J Med Imaging Radiat Sci, 2015 Sep;46(3S):S31-S36.
    PMID: 31052105 DOI: 10.1016/j.jmir.2015.06.002
    INTRODUCTION: The aim of this study was to assess the influence of background activity on the accuracy of volume estimation of target objects using an iterative thresholding method.

    METHODS: Single-photon-emission computed tomography studies were carried out for plastic bottles of various sizes as target objects containing Technetium-99m placed in a cylindrical water phantom. The phantoms were created to have varying ratios of target activity concentration to background activity concentration (T/B) ranging from 4.00 to 1.25. From the single-photon-emission computed tomography slices, the volume of the target object was estimated using an iterative thresholding method. A unique threshold that estimated the volume of the target object was determined and declared as ideal threshold for each level of background activity. Simple linear regression analysis was carried out to explore the relationship between the actual volume and estimated volume.

    RESULTS: The analysis shows a statistically significant linear relationship (P < .01) between actual volume and estimated volume. For all ratios of target activity concentration to background activity concentration studied, the relative errors in estimated volumes of target objects are within ±7%. Thresholds that estimated volume of target objects vary depending on the level of background activity.

    CONCLUSIONS: It is clearly demonstrated that background activity highly influenced the volume estimation. Therefore, background activity of the target object needs to be considered when selecting the ideal thresholds to obtain accurate volume estimation of target objects.

  4. Yap LPP, Wong JHD, Muhammad Gowdh NF, Ng WL, Chung E, Eturajulu RC, et al.
    J Med Imaging Radiat Sci, 2021 06;52(2):257-264.
    PMID: 33531272 DOI: 10.1016/j.jmir.2021.01.003
    INTRODUCTION: Fixed volume (FV) contrast media administration during CT examination is the standard practice in most healthcare institutions. We aim to validate a customised weight-based volume (WBV) method and compare it to the conventional FV methods, introduced in a regional setting.

    METHODS: 220 patients underwent CT of the chest, abdomen and pelvis (CAP) using a standard FV protocol, and subsequently, a customised 1.0 mL/kg WBV protocol within one year. Both image sets were assessed for contrast enhancement using CT attenuation at selected regions-of-interest (ROIs). The visual image quality was evaluated by three radiologists using a 4-point Likert scale. Quantitative CT attenuation was correlated with the visual quality assessment to determine the HU's enhancement indicative of the image quality grades. Contrast media usage was calculated to estimate cost-savings from both protocols.

    RESULTS: Mean patient age was 61 ± 14 years, and weight was 56.1 ± 8.7 kg. FV protocol produced higher contrast enhancement than WBV, p 

  5. Velo P, Ismail MI, Mohandas KK, Kasilingam L
    J Med Imaging Radiat Sci, 2023 Mar;54(1):43-50.
    PMID: 36402716 DOI: 10.1016/j.jmir.2022.09.010
    INTRODUCTION: The aim of present study is to estimate effective dose in patient undergoing 18F-FDG for whole body PET/CT imaging with diagnostic CT parameters and identify the lowest achievable total effective dose.

    METHOD: A total of 2247 PET/CT patients with normal glucose level underwent 18F-FDG-whole body imaging procedures. The 18F-FDG dose of 3.7MBq per kg of patient weight administered via intravenous infusion. For CT parameters, kilovoltage of 140keV and current of 40 mAs were used for all studies. All the acquired images collected retrospectively and the effective dose was calculated for each patient using algorithm adapted from ICRP Publication 106, modified for patient weight and patient blood volume. The estimated effective doses were evaluated for patients' body weight and BMI.

    RESULTS: The mean of total effective dose and standard deviation is approximately 15.08(4.52) mSv using ICRP algorithm. 56% of total patient has normal BMI and their average total effective dose is 13.6mSv. Underweight patients' effective dose can be as low as 9.6mSv even using diagnostic CT protocols.

    CONCLUSION: The effective dose of PET/CT procedure in present study is one of the lowest although using diagnostic parameters for CT acquisition compared to published data worldwide. This is due to the improved sensitivity of PET and complex reconstruction technique that maintains the image quality. A significant association between body weight, BMI and effective dose is reported in present study. Therefore, it is suggested that attention must be given for underweight and ideal BMI patients while prescribing FDG activity and CT imaging parameters in order to minimize the effective dose. The effective dose reported in present study can be considered as an upper limit for effective dose in PET/CT patients with normal BMI. This upper limit can be treated as a standard limit when optimizing imaging parameters, developing algorithm for image reconstruction and prescribing activity for patients. This practice could fulfill ALARA principle that could reduce cancer risk.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links