Affiliations 

  • 1 Nuclear Medicine Department, Beacon Hospital Sdn Bhd, Petaling Jaya Selangor, Malaysia. Electronic address: parimalah.velo@beaconhospital.com.my
  • 2 Nuclear Medicine Department, Beacon Hospital Sdn Bhd, Petaling Jaya Selangor, Malaysia
J Med Imaging Radiat Sci, 2023 Mar;54(1):43-50.
PMID: 36402716 DOI: 10.1016/j.jmir.2022.09.010

Abstract

INTRODUCTION: The aim of present study is to estimate effective dose in patient undergoing 18F-FDG for whole body PET/CT imaging with diagnostic CT parameters and identify the lowest achievable total effective dose.

METHOD: A total of 2247 PET/CT patients with normal glucose level underwent 18F-FDG-whole body imaging procedures. The 18F-FDG dose of 3.7MBq per kg of patient weight administered via intravenous infusion. For CT parameters, kilovoltage of 140keV and current of 40 mAs were used for all studies. All the acquired images collected retrospectively and the effective dose was calculated for each patient using algorithm adapted from ICRP Publication 106, modified for patient weight and patient blood volume. The estimated effective doses were evaluated for patients' body weight and BMI.

RESULTS: The mean of total effective dose and standard deviation is approximately 15.08(4.52) mSv using ICRP algorithm. 56% of total patient has normal BMI and their average total effective dose is 13.6mSv. Underweight patients' effective dose can be as low as 9.6mSv even using diagnostic CT protocols.

CONCLUSION: The effective dose of PET/CT procedure in present study is one of the lowest although using diagnostic parameters for CT acquisition compared to published data worldwide. This is due to the improved sensitivity of PET and complex reconstruction technique that maintains the image quality. A significant association between body weight, BMI and effective dose is reported in present study. Therefore, it is suggested that attention must be given for underweight and ideal BMI patients while prescribing FDG activity and CT imaging parameters in order to minimize the effective dose. The effective dose reported in present study can be considered as an upper limit for effective dose in PET/CT patients with normal BMI. This upper limit can be treated as a standard limit when optimizing imaging parameters, developing algorithm for image reconstruction and prescribing activity for patients. This practice could fulfill ALARA principle that could reduce cancer risk.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.