Displaying all 12 publications

Abstract:
Sort:
  1. Ying CK, Kandaiya S
    J Radiol Prot, 2010 Sep;30(3):585-96.
    PMID: 20826892 DOI: 10.1088/0952-4746/30/3/012
    Interventional cardiology (IC) procedures are known to give high radiation doses to patients and cardiologists as they involve long fluoroscopy times and several cine runs. Patients' dose measurements were carried out at the cardiology department in a local hospital in Penang, Malaysia, using Gafchromic XR-RV2 films. The dosimetric properties of the Gafchromic film were first characterised. The film was energy and dose rate independent but dose dependent for the clinically used values. The film had reproducibility within ± 3% when irradiated on three different days and hence the same XR-RV2 dose-response calibration curve can be used to obtain patient entrance skin dose on different days. The increase in the response of the film post-irradiation was less than 4% over a period of 35 days. For patient dose measurements, the films were placed on the table underneath the patient for an under-couch tube position. This study included a total of 44 patients. Values of 35-2442 mGy for peak skin dose (PSD) and 10.9-344.4 Gy cm(2) for dose-area product (DAP) were obtained. DAP was found to be a poor indicator of PSD for PTCA procedures but there was a better correlation (R(2) = 0.7344) for CA + PTCA procedures. The highest PSD value in this study exceeded the threshold dose value of 2 Gy for early transient skin injury recommended by the Food and Drug Administration.
  2. Burgess P
    J Radiol Prot, 2006 Jun;26(2):235-6; author reply 236-7.
    PMID: 16738419
  3. Ramli AT, Sahrone S, Wagiran H
    J Radiol Prot, 2005 Dec;25(4):435-50.
    PMID: 16340071
    Environmental terrestrial gamma radiation dose rates were measured throughout Melaka, Malaysia, over a period of two years, with the objective of establishing baseline data on the background radiation level. Results obtained are shown in tabular, graphic and cartographic form. The values of terrestrial gamma radiation dose rate vary significantly over different soil types and for different underlying geological characteristics present in the study area. The values ranged from 54 +/- 5 to 378 +/- 38 nGy h(-1). The highest terrestrial gamma dose rates were measured over soil types of granitic origin and in areas with underlying geological characteristics of an acid intrusive (undifferentiated) type. An isodose map of terrestrial gamma dose rate in Melaka was drawn by using the GIS application 'Arc View'. This was based on data collected using a NaI(Tl) scintillation detector survey meter. The measurements were taken at 542 locations. Three small 'hot spots' were found where the dose rates were more than 350 nGy h(-1). The mean dose rates in the main population areas in the mukims (parishes) of Bukit Katil, Sungai Udang, Batu Berendam, Bukit Baru and Bandar Melaka were 154 +/- 15, 161 +/- 16, 160 +/- 16, 175 +/- 18 and 176 +/- 18 nGy h(-1), respectively. The population-weighted mean dose rate throughout Melaka state is 172 +/- 17 nGy h(-1). This is lower than the geographical mean dose rate of 183 +/- 54 nGy h(-1). The lower value arises from the fact that most of the population lives in the central area of the state where the lithology is dominated by sedimentary rocks consisting of shale, mudstone, phyllite, slate, hornfels, sandstone and schist of Devonian origin which have lower associated dose rates. The mean annual effective dose to the population from outdoor terrestrial gamma radiation was estimated to be 0.21 mSv. This value is higher than the world average of 0.07 mSv.
  4. Ramli AT, Apriantoro NH, Heryansyah A, Basri NA, Sanusi MS, Abu Hanifah NZ
    J Radiol Prot, 2016 Mar;36(1):20-36.
    PMID: 26583298 DOI: 10.1088/0952-4746/36/1/20
    An extensive terrestrial gamma radiation dose (TGRD) rate survey has been conducted in Perak State, Peninsular Malaysia. The survey has been carried out taking into account geological and soil information, involving 2930 in situ surveys. Based on geological and soil information collected during TGRD rate measurements, TGRD rates have been predicted in Perak State using a statistical regression analysis which would be helpful to focus surveys in areas that are difficult to access. An equation was formulated according to a linear relationship between TGRD rates, geological contexts and soil types. The comparison of in situ measurements and predicted TGRD dose rates was tabulated and showed good agreement with the linear regression equation. The TGRD rates in the study area ranged from 38 nGy h(-1) to 1039 nGy h(-1) with a mean value of 224  ±  138 nGy h(-1). This value is higher than the world average as reported in UNSCEAR 2000. The TGRD rates contribute an average dose rate of 1.37 mSv per year. An isodose map for the study area was developed using a Kriging method based on predicted and in situ TGRD rate values.
  5. Abdurabu WA, Ramli AT, Saleh MA, Heryansyah A, Alnhary A, Fadhl S
    J Radiol Prot, 2016 Mar;36(1):163-77.
    PMID: 26909670 DOI: 10.1088/0952-4746/36/1/163
    This study aims to evaluate natural radiation and radioactivity in the rock and to assess the corresponding health risk in a region of elevated background radiation in Juban District, Ad Dali' Governorate, Yemen. The mean external gamma dose rate was 374 nGy h(-1) which is approximately six times the world average. The measured results were used to compute annual effective dose equivalent, collective effective dose and excess lifetime cancer risk, which are 2.298 mSv, 61.95 man Sv y(-1) and 8.043  ×  10(-3), respectively. Rocks samples from different geological formations were analyzed for quantitative determination of (226)Ra, (232)Th and (40)K. The specific activity of the rocks samples ranges from 7  ±  1 Bq Kg(-1) to 12 513  ±  329 Bq Kg(-1) for (232)Th, from 6  ±  1 Bq kg(-1) to 3089  ±  74 Bq kg(-1) for (226)Ra and 702  ±  69 Bq kg(-1) to 2954  ±  285 Bq kg(-1) for (40)K. (232)Th is the main contributor to gamma dose rate from the rock samples. Indicators of radiological health impact, radium equivalent activity and external hazard index are 3738 Bq kg(-1) and 10.10, respectively. The mean external hazard index was ten times unity in the studied locations in Juban District, which is higher than the recommended value.
  6. Abdulla YA, Amin YM, Khoo HB
    J Radiol Prot, 2002 Dec;22(4):417-21.
    PMID: 12546228
    Percentage depth doses for 6 and 10 MV x-ray beams from a linear accelerator were measured using approximately 1 cm long (approximately 0.3 mg) Ge-doped optical fibre as a thermoluminescence dosimeter for two field sizes, 5 x 5 and 10 x 10 cm2. The results indicate that the Ge-doped optical fibre dosimeter is in good agreement with the results from a PTW 30001 cylindrical ionisation chamber and TLD-100. For 6 MV x-ray beams we observe that the depth of maximum dose d(max) is 1.5 and 2 cm for field sizes of 5 x 5 and 10 x 10 cm2 respectively. For 10 MV d(max) is 2 cm for a field size of 5 x 5 cm2 and 2.5 cm for a 10 x 10 cm2 field.
  7. Rais NNM, Bradley DA, Hashim A, Isa NM, Osman ND, Ismail I, et al.
    J Radiol Prot, 2019 Sep;39(3):N8-N18.
    PMID: 31018196 DOI: 10.1088/1361-6498/ab1c16
    Novel germanium (Ge)-doped silica glass fibres tailor-made in Malaysia are fast gaining recognition as potential media for thermoluminescence (TL) dosimetry, with active research ongoing into exploitation of their various beneficial characteristics. Investigation is made herein of the capability of these media for use in diagnostic imaging dosimetry, specifically at the radiation dose levels typically obtained in conduct of Computed Tomography (CT). As a first step within such efforts, there is need to investigate the performance of the fibres using tightly defined spectra, use being made of a Philips constant potential industrial x-ray facility, Model MG165, located at the Malaysian Nuclear Agency Secondary Standards Dosimetry Lab (SSDL). Standard radiation beam qualities (termed RQT) have been established for CT, in accord with IEC 61267: 2003 and IAEA Technical Reports Series No. 457: 2007. A calibrated ionisation chamber has also been utilised, forming a component part of the SSDL equipment. The fabricated fibres used in this study are 2.3 mol% flat fibre (FF) of dimensions 643 × 356 μm2 and 2.3 mol% cylindrical fibre (CF) of 481 μm diameter, while the commercial fibre used is 4 mol% with core diameter of 50 μm. The dopant concentrations are nominal preform values. The fibres have been irradiated to doses of 20, 30 and 40 milligray (mGy) for each of the beam qualities RQT 8, RQT 9 and RQT 10. For x-rays generated at constant potential values from 100 to 150 kV, a discernible energy-dependent response is seen, comparisons being made with that of lithium fluoride (LiF) thermoluminescence dosimeters (TLD-100). TL yield versus dose has also been investigated for x-ray doses from 2 to 40 mGy, all exhibiting linearity. Compared to TLD-100, greater sensitivity is observed for the fibres.
  8. Basri NA, Hashim S, Ramli AT, Bradley DA, Hamzah K
    J Radiol Prot, 2016 Dec;36(4):R96-R111.
    PMID: 27631675
    Malaysia has initiated a range of pre-project activities in preparation for its planned nuclear power programme. Clearly one of the first steps is the selection of sites that are deemed suitable for the construction and operation of a nuclear power plant. Here we outline the Malaysian regulatory requirements for nuclear power plant site selection, emphasizing details of the selection procedures and site characteristics needed, with a clear focus on radiation safety and radiation protection in respect of the site surroundings. The Malaysia Atomic Energy Licensing Board (AELB) site selection guidelines are in accord with those provided in International Atomic Energy Agency (IAEA) and United Stated Nuclear Regulatory Commission (USNRC) documents. To enhance the suitability criteria during selection, as well as to assist in the final decision making process, possible assessments using the site selection characteristics and information are proposed.
  9. Rozaila ZS, Khandaker MU, Abdul Sani SF, Sabtu SN, Amin YM, Maah MJ, et al.
    J Radiol Prot, 2017 Sep 25;37(3):761-779.
    PMID: 28581438 DOI: 10.1088/1361-6498/aa770e
    The sensitivity of a novel silica-based fibre-form thermoluminescence dosimeter was tested off-site of a rare-earths processing plant, investigating the potential for obtaining baseline measurements of naturally occurring radioactive materials. The dosimeter, a Ge-doped collapsed photonic crystal fibre (PCFc) co-doped with B, was calibrated against commercially available thermoluminescent dosimetry (TLD) (TLD-200 and TLD-100) using a bremsstrahlung (tube-based) x-ray source. Eight sampling sites within 1 to 20 km of the perimeter of the rare-earth facility were identified, the TLDs (silica- as well as TLD-200 and TLD-100) in each case being buried within the soil at fixed depth, allowing measurements to be obtained, in this case for protracted periods of exposure of between two to eight months. The values of the dose were then compared against values projected on the basis of radioactivity measurements of the associated soils, obtained via high-purity germanium gamma-ray spectrometry. Accord was found in relative terms between the TL evaluations at each site and the associated spectroscopic results. Thus said, in absolute terms, the TL evaluated doses were typically less than those derived from gamma-ray spectroscopy, by ∼50% in the case of PCFc-Ge. Gamma spectrometry analysis typically provided an upper limit to the projected dose, and the Marinelli beaker contents were formed from sieving to provide a homogenous well-packed medium. However, with the radioactivity per unit mass typically greater for smaller particles, with preferential adsorption on the surface and the surface area per unit volume increasing with decrease in radius, this made for an elevated dose estimate. Prevailing concentrations of key naturally occurring radionuclides in soil,226Ra,232Th and40K, were also determined, together with radiological dose evaluation. To date, the area under investigation, although including a rare-earth processing facility, gives no cause for concern from radiological impact. The current study reveals the suitability of the optical fibre based micro-dosimeter for all-weather monitoring of low-level environmental radioactivity.
  10. Siti Rozaila Z, Khandaker MU, Abdul Sani SF, Sabtu SN, Amin YM, Maah MJ, et al.
    J Radiol Prot, 2018 12;38(4):1535-1543.
    PMID: 30089707 DOI: 10.1088/1361-6498/aad917
  11. Martin CJ, Vassileva J, Vano E, Mahesh M, Ebdon-Jackson S, Ng K, et al.
    J Radiol Prot, 2017 Aug 24.
    PMID: 28836506 DOI: 10.1088/1361-6498/aa881e
    This paper sets out guidelines for managing radiation exposure incidents involving patients in diagnostic and interventional radiology. The work is based on collation of experiences from representatives of international and national organizations for radiologists, medical physicists, radiographers, regulators, and equipment manufacturers, derived from an International Atomic Energy Agency Technical Meeting. More serious overexposures can result in skin doses high enough to produce tissue reactions, in interventional procedures and computed tomography, most notably from perfusion studies. A major factor involved has been deficiencies in training of staff in operation of equipment and optimization techniques. The use of checklists and time outs before procedures commence, and dose alerts when critical levels are reached during procedures can provide safeguards to reduce risks of these effects occurring. However, unintended and accidental overexposures resulting in relatively small additional doses can take place in any diagnostic or interventional X-ray procedure and it is important to learn from errors that occur, as these may lead to increased risks of stochastic effects. Such events may involve the wrong examinations, procedural errors, or equipment faults. Guidance is given on prevention, investigation and dose calculation for radiology exposure incidents within healthcare facilities. Responsibilities should be clearly set out in formal policies, and procedures should be in place to ensure that root causes are identified and deficiencies addressed. When an overexposure of a patient or an unintended exposure of a foetus occurs, the foetal, organ, skin and/or effective dose may be estimated from exposure data. When doses are very low, generic values for the examination may be sufficient, but a full assessment of doses to all exposed organs and tissues may sometimes be required. The use of general terminology to describe risks from stochastic effects is recommended rather than calculation of numerical values, as these are misleading when applied to individuals.
  12. Alhorani Q, Alkhybari E, Rawashdeh M, Sabarudin A, Latiff RA, Al-Ibraheem A, et al.
    J Radiol Prot, 2024 Mar 07;44(1).
    PMID: 38387102 DOI: 10.1088/1361-6498/ad2c62
    This study aims to report the findings of Jordanian national diagnostic reference level (NDRL) survey for fluorodeoxyglucose (18F-FDG) and local diagnostic reference level (LDRL) of computed tomography (CT) used for attenuation correction and anatomical localisation (AC-AL); and AC and diagnostic CT (AC-DX) within the context of whole-body WB and half-body HB adult oncology PET/CT scanning. Two-structured questionnaires were prepared to gather the necessary information: dosimetry data, patient demographics, equipment specification, and acquisition protocols for identified18F-FDG PET/CT procedures. The NDRL and achievable dose were reported based on the 75th and 50th percentiles for18F-FDG administered activity (AA), respectively. The LDRL was reported based on the 50th percentile for (CTDIvol) and (DLP). Data from 562 patients from four Jordanian PET/CT centres were collected. The survey revealed that Jordanian NDRL for AA (303 MBq) was within the acceptable range compared to the published-peer NDRL data (240-590 MBq). However, the18F-FDG AA varied across the participated PET/CT centres. The reported LDRL CTDIvoland DLP of CT used for (AC-AL) was 4.3 mGy and 459.3 mGy.cm for HB CT scan range, and 4.1 mGy and 659.9 mGy.cm for WB CT scans. The reported LDRL for CTDIvoland DLP for HB CT was higher when compared with the United Kingdom (3.2 mGy and 310 mGy.cm). Concurrently, in the context of WB CT, the reported values (i.e. CTDIvol and DLP) were also higher than both Kuwait (3.6 mGy and 659 mGy.cm) and Slovenia (3.6 mGy and 676 mGy.cm). The reported HB CT(AC-DX) was higher than Nordic, New Zealand and Swiss NDRLs and for WB (AC-DX) CT it was higher than Swiss NDRLs. This study reported the first Jordanian NDRL for18F-FDG and LDRL for HB and WB CT associated with18F-FDG PET/CT scans. This data is useful for Jordanian PET/CT centres to compare their LDRL to the suggested DRLs and utilise it in the process of optimising CT radiation doses.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links