Displaying all 4 publications

Abstract:
Sort:
  1. Noorbatcha IA, Sultan AM, Salleh HM, Amid A
    Protein J, 2013 Apr;32(4):309-16.
    PMID: 23636517 DOI: 10.1007/s10930-013-9489-y
    Molecular dynamics simulation was used to study the dynamic differences between native Aspergillus niger PhyA phytase and a mutant with 20 % greater thermostability. Atomic root mean square deviation, radius of gyration, and number of hydrogen bonds and salt bridges are examined to determine thermostability factors. The results suggest that, among secondary structure elements, loops have the most impact on the thermal stability of A. niger phytase. In addition, the location rather than the number of hydrogen bonds is found to have an important contribution to thermostability. The results also show that salt bridges may have stabilizing or destabilizing effect on the enzyme and influence its thermostability accordingly.
    Matched MeSH terms: 6-Phytase/metabolism
  2. Lan GQ, Abdullah N, Jalaludin S, Ho Y
    Lett Appl Microbiol, 2002;35(2):157-61.
    PMID: 12100593
    The effects of different carbon and nitrogen sources on phytase production by Mitsuokella jalaludinii were evaluated and the optimization of rice bran (RB) and soybean milk (SM) concentrations in the medium for phytase production was also determined.
    Matched MeSH terms: 6-Phytase/metabolism
  3. Lan G, Abdullah N, Jalaludin S, Ho YW
    J Sci Food Agric, 2012 Jan 30;92(2):266-73.
    PMID: 21796639 DOI: 10.1002/jsfa.4570
    Phytate-bound phosphorus (P) in poultry diets is poorly available to chickens. Hence exogenous phytase is often added to their diets. Mitsuokella jalaludinii is a rumen bacterial species that produces high phytase activity. In this study the effects of freeze-dried active M. jalaludinii culture (FD-AMJC) and Natuphos(®) phytase (phytase N) supplementations on the growth performance and nutrient utilisation of broiler chickens fed a low-available P (aP) diet were evaluated.
    Matched MeSH terms: 6-Phytase/metabolism
  4. Lan GQ, Ho YW, Abdullah N
    Int J Syst Evol Microbiol, 2002 May;52(Pt 3):713-718.
    PMID: 12054230 DOI: 10.1099/00207713-52-3-713
    Five strains of phytase-producing, gram-negative, non-spore-forming, non-motile, small, stout, rod-shaped, strictly anaerobic, fermentative bacteria were isolated from the rumens of cattle in Malaysia. All five strains had morphological, physiological and biochemical features in common. Although these strains had many physiological and biochemical characteristics that were identical to those of the Mitsuokella multacida type strain (ATCC 27723T), they could be distinguished from this species by means of the following characteristics: a smaller cell size (1.2-2.4 microm long and 0.6-0.8 microm wide); a lower final pH value (3.8-4.0) in peptone/yeast extract/glucose broth; inhibition by 0.001% brilliant green; insensitivity to kanamycin (100 microg ml(-1)) and penicillin (10 microg ml(-1)); a higher optimum growth temperature (approx. 42 degrees C); the ability to grow at 45 and 47 degrees C; the ability to ferment glycerol, sorbitol and amidon; and the inability to ferment mannitol, rhamnose, D-tagatose and melezitose. The G+C content of the type strain (M 9T) of these five strains was 56.9 mol%. Analysis of the 16S rRNA gene sequence of type strain M 9T indicated that the strain falls within the genus Mitsuokella. The sequence similarity between type strain M 9T and Mitsuokella multacida was 98.7%. The DNA-DNA relatedness between type strain M 9T and Mitsuokella multacida type strain DSM 20544T (= ATCC 27723T) was 63.8%, indicating that, in spite of a high level of similarity for the 16S rRNA gene sequence, type strain M 9T is independent of Mitsuokella multacida at the species level. On the basis of these results, a new species, Mitsuokella jalaludinii sp. nov., is proposed for these strains. The type strain is M 9T (= DSM 13811T = ATCC BAA-307T).
    Matched MeSH terms: 6-Phytase/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links