METHODS: PACKNOW was an open-label, randomized, controlled trial of acetaminophen (500 mg or 1000 mg every 6 hours for 72 hours) vs no acetaminophen in Malaysian patients aged ≥5 years with knowlesi malaria of any severity. The primary end point was change in creatinine at 72 hours. Secondary end points included longitudinal changes in creatinine in patients with severe malaria or acute kidney injury (AKI), stratified by hemolysis.
RESULTS: During 2016-2018, 396 patients (aged 12-96 years) were randomized to acetaminophen (n = 199) or no acetaminophen (n = 197). Overall, creatinine fell by a mean (standard deviation) 14.9% (18.1) in the acetaminophen arm vs 14.6% (16.0) in the control arm (P = .81). In severe disease, creatinine fell by 31.0% (26.5) in the acetaminophen arm vs 20.4% (21.5) in the control arm (P = .12), and in those with hemolysis by 35.8% (26.7) and 19% (16.6), respectively (P = .07). No difference was seen overall in patients with AKI; however, in those with AKI and hemolysis, creatinine fell by 34.5% (20.7) in the acetaminophen arm vs 25.9% (15.8) in the control arm (P = .041). Mixed-effects modeling demonstrated a benefit of acetaminophen at 72 hours (P = .041) and 1 week (P = .002) in patients with severe malaria and with AKI and hemolysis (P = .027 and P = .002, respectively).
CONCLUSIONS: Acetaminophen did not improve creatinine among the entire cohort but may improve renal function in patients with severe knowlesi malaria and in those with AKI and hemolysis.
CLINICAL TRIALS REGISTRATION: NCT03056391.
DESIGN: Network meta-analysis.
DATA SOURCES: PubMed, Embase, Scopus, Cochrane Library and Web of Science from database inception to January 2022.
ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Randomised controlled trials (RCTs) comparing exercise therapy with oral NSAIDs and paracetamol directly or indirectly in knee or hip OA.
RESULTS: A total of n=152 RCTs (17 431 participants) were included. For pain relief, there was no difference between exercise and oral NSAIDs and paracetamol at or nearest to 4 (standardised mean difference (SMD)=-0.12, 95% credibility interval (CrI) -1.74 to 1.50; n=47 RCTs), 8 (SMD=0.22, 95% CrI -0.05 to 0.49; n=2 RCTs) and 24 weeks (SMD=0.17, 95% CrI -0.77 to 1.12; n=9 RCTs). Similarly, there was no difference between exercise and oral NSAIDs and paracetamol in functional improvement at or nearest to 4 (SMD=0.09, 95% CrI -1.69 to 1.85; n=40 RCTs), 8 (SMD=0.06, 95% CrI -0.20 to 0.33; n=2 RCTs) and 24 weeks (SMD=0.05, 95% CrI -1.15 to 1.24; n=9 RCTs).
CONCLUSIONS: Exercise has similar effects on pain and function to that of oral NSAIDs and paracetamol. Given its excellent safety profile, exercise should be given more prominence in clinical care, especially in older people with comorbidity or at higher risk of adverse events related to NSAIDs and paracetamol.CRD42019135166.
OBJECTIVES: To evaluate all randomized controlled trials (RCTs) that have assessed strategies for treatment and prevention of heavy menstrual bleeding or pain associated with IUD use, for example, pharmacotherapy and alternative therapies.
SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase and CINAHL to January 2021.
SELECTION CRITERIA: We included RCTs in any language that tested strategies for treatment or prevention of heavy menstrual bleeding or pain associated with IUD (Cu IUD, LNG IUD or other IUD) use. The comparison could be no intervention, placebo or another active intervention.
DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trials for inclusion and risk of bias, and extracted data. Primary outcomes were volume of menstrual blood loss, duration of menstruation and painful menstruation. We used a random-effects model in all meta-analyses. Review authors assessed the certainty of evidence using GRADE.
MAIN RESULTS: This review includes 21 trials involving 3689 participants from middle- and high-income countries. Women were 18 to 45 years old and either already using an IUD or had just had one placed for contraception. The included trials examined NSAIDs and other interventions. Eleven were treatment trials, of these seven were on users of the Cu IUD, one on LNG IUD and three on an unknown type. Ten were prevention trials, six focused on Cu IUD users, and four on LNG IUD users. Sixteen trials had high risk of detection bias due to subjective assessment of pain and bleeding. Treatment of heavy menstrual bleeding Cu IUD Vitamin B1 resulted in fewer pads used per day (mean difference (MD) -7.00, 95% confidence interval (CI) -8.50 to -5.50) and fewer bleeding days (MD -2.00, 95% CI -2.38 to -1.62; 1 trial; 110 women; low-certainty evidence) compared to placebo. The evidence is very uncertain about the effect of naproxen on the volume of menstruation compared to placebo (odds ratio (OR) 0.09, 95% CI 0.00 to 1.78; 1 trial, 40 women; very low-certainty evidence). Treatment with mefenamic acid resulted in less volume of blood loss compared to tranexamic acid (MD -64.26, 95% CI -105.65 to -22.87; 1 trial, 94 women; low-certainty evidence). However, there was no difference in duration of bleeding with treatment of mefenamic acid or tranexamic acid (MD 0.08 days, 95% CI -0.27 to 0.42, 2 trials, 152 women; low-certainty evidence). LNG IUD The use of ulipristal acetate in LNG IUD may not reduce the number of bleeding days in 90 days in comparison to placebo (MD -9.30 days, 95% CI -26.76 to 8.16; 1 trial, 24 women; low-certainty evidence). Unknown IUD type Mefenamic acid may not reduce volume of bleeding compared to Vitex agnus measured by pictorial blood assessment chart (MD -2.40, 95% CI -13.77 to 8.97; 1 trial; 84 women; low-certainty evidence). Treatment of pain Cu IUD Treatment with tranexamic acid and sodium diclofenac may result in little or no difference in the occurrence of pain (OR 1.00, 95% CI 0.06 to 17.25; 1 trial, 38 women; very low-certainty evidence). Unknown IUD type Naproxen may reduce pain (MD 4.10, 95% CI 0.91 to 7.29; 1 trial, 33 women; low-certainty evidence). Prevention of heavy menstrual bleeding Cu IUD We found very low-certainty evidence that tolfenamic acid may prevent heavy bleeding compared to placebo (OR 0.54, 95% CI 0.34 to 0.85; 1 trial, 310 women). There was no difference between ibuprofen and placebo in blood volume reduction (MD -14.11, 95% CI -36.04 to 7.82) and duration of bleeding (MD -0.2 days, 95% CI -1.40 to 1.0; 1 trial, 28 women, low-certainty evidence). Aspirin may not prevent heavy bleeding in comparison to paracetamol (MD -0.30, 95% CI -26.16 to 25.56; 1 trial, 20 women; very low-certainty evidence). LNG IUD Ulipristal acetate may increase the percentage of bleeding days compared to placebo (MD 9.50, 95% CI 1.48 to 17.52; 1 trial, 118 women; low-certainty evidence). There were insufficient data for analysis in a single trial comparing mifepristone and vitamin B. There were insufficient data for analysis in the single trial comparing tranexamic acid and mefenamic acid and in another trial comparing naproxen with estradiol. Prevention of pain Cu IUD There was low-certainty evidence that tolfenamic acid may not be effective to prevent painful menstruation compared to placebo (OR 0.71, 95% CI 0.44 to 1.14; 1 trial, 310 women). Ibuprofen may not reduce menstrual cramps compared to placebo (OR 1.00, 95% CI 0.11 to 8.95; 1 trial, 20 women, low-certainty evidence).
AUTHORS' CONCLUSIONS: Findings from this review should be interpreted with caution due to low- and very low-certainty evidence. Included trials were limited; the majority of the evidence was derived from single trials with few participants. Further research requires larger trials and improved trial reporting. The use of vitamin B1 and mefenamic acid to treat heavy menstruation and tolfenamic acid to prevent heavy menstruation associated with Cu IUD should be investigated. More trials are needed to generate evidence for the treatment and prevention of heavy and painful menstruation associated with LNG IUD.
AIMS: To investigate the effect of intraperitoneal administration of ondansetron for postoperative pain management as an adjuvant to intravenous acetaminophen in patients undergoing laparoscopic cholecystectomy.
METHODS: Patients scheduled for elective laparoscopic cholecystectomy were randomized into two groups (n = 25 each) to receive either intraperitoneal ondansetron or saline injected in the gall bladder bed at the end of the procedure. The primary outcome was the difference in pain from baseline to 24-h post-operative assessed by comparing the area under the curve of visual analog score between the two groups.
RESULTS: The derived area under response curve of visual analog scores in the ondansetron group (735.8 ± 418.3) was 33.97% lower than (p = 0.005) that calculated for the control group (1114.4 ± 423.9). The need for rescue analgesia was significantly lower in the ondansetron (16%) versus in the control group (54.17%) (p = 0.005), indicating better pain control. The correlation between the time for unassisted mobilization and the area under response curve of visual analog scores signified the positive analgesic influence of ondansetron (rs =0.315, p = 0.028). The frequency of nausea and vomiting was significantly lower in patients who received ondansetron than that reported in the control group (p = 0.023 (8 h), and 0.016 (24 h) respectively).
CONCLUSIONS: The added positive impact of ondansetron on postoperative pain control alongside its anti-emetic effect made it a unique novel option for patients undergoing laparoscopic cholecystectomy.