Displaying all 6 publications

Abstract:
Sort:
  1. Halimah M, Tan YA, Ismail BS
    J Environ Sci Health B, 2004;39(5-6):765-77.
    PMID: 15620085
    Four methods were developed for the analysis of fluroxypyr in soil samples from oil palm plantations. The first method involved the extraction of the herbicide with 0.05 M NaOH in methanol followed by purification using acid base partition. The concentrated material was subjected to derivatization and then cleaning process using a florisil column and finally analyzed by gas chromatography (GC) equipped with electron capture detector (ECD). By this method, the recovery of fluroxypyr from the spiked soil ranged from 70 to 104% with the minimum detection limit at 5 microg/kg. The second method involved solid liquid extraction of fluroxypyr using a horizontal shaker followed by quantification using high performance liquid chromatography (HPLC) equipped with UV detector. The recovery of fluroxypyr using this method, ranged from 80 to 120% when the soil was spiked with fluroxypyr at 0.1-0.2 microg/g soil. In the third method, the recovery of fluroxypyr was determined by solid liquid extraction using an ultrasonic bath. The recovery of fluroxypyr at spiking levels of 4-50 microg/L ranged from 88 to 98% with relative standard deviations of 3.0-5.8% with a minimum detection limit of 4 microg/kg. In the fourth method, fluroxypyr was extracted using the solid liquid extraction method followed by the cleaning up step with OASIS HLB (polyvinyl dibenzene). The recovery of fluroxypyr was between 91 and 95% with relative standard deviations of 4.2-6.2%, respectively. The limit of detection in method 4 was further improved to 1 pg/kg. When the weight of soil used was increased 4 fold, the recovery of fluroxypyr at spiking level of 1-50 microg/kg ranged from 82-107% with relative standard deviations of 0.5-4.7%.
    Matched MeSH terms: Acetates/analysis*
  2. Murthy MB, Daya Sagar BS, Patil RL
    PMID: 12659896
    The electronic absorption spectra of eight substituted acetic acids have been measured at room temperature in several solvents. The ground state dipole moments are evaluated experimentally for these molecules. These ground state values are used in conjunction with the spectral results to evaluate their first electronically excited state dipole moments. For all the molecules investigated here the dipole moments in the excited state are higher than their ground state values.
    Matched MeSH terms: Acetates/analysis
  3. Wong YS, Kadir MO, Teng TT
    Bioresour Technol, 2009 Nov;100(21):4969-75.
    PMID: 19560338 DOI: 10.1016/j.biortech.2009.04.074
    Biological kinetic (bio-kinetic) study of the anaerobic stabilization pond treatment of palm oil mill effluent (POME) was carried out in a laboratory anaerobic bench scale reactor (ABSR). The reactor was operated at different feed flow-rates of 0.63, 0.76, 0.95, 1.27, 1.9 and 3.8l of raw POME for a day. Chemical oxygen demand (COD) as influent substrates was selected for bio-kinetic study. The investigation showed that the growth yield (Y(G)), specific biomass decay (b), maximum specific biomass growth rate (mu(max)), saturation constant (K(s)) and critical retention time (Theta(c)) were in the range of 0.990 g VSS/g COD(removed) day, 0.024 day(-1), 0.524 day(-1), 203.433 g COD l(-1) and 1.908 day, respectively.
    Matched MeSH terms: Acetates/analysis
  4. Muhamad HB, Ai TY, Sahid IB
    J Environ Sci Health B, 2008 Feb;43(2):134-40.
    PMID: 18246505 DOI: 10.1080/03601230701795072
    The purpose of this study was to develop a method for the determination of fluroxypyr (4-amino-3,5-dichloro-6-fluro2-pyridyloxyacetic acid) residue in palm oil namely crude palm oil (CPO) and crude palm kernel oil (CPKO). The method involves the extraction of the herbicide from the oil matrix followed by low temperature precipitation and finally quantification of the residues using the high performance liquid chromatography (HPLC). The extraction efficiency of the method was evaluated by conducting recovery studies. The recovery of fluroxypyr from the fortified CPO samples ranged from 78%-111% with the relative values for the coefficient of variation ranging from 1.4 to 8.6%. Furthermore, the recovery of fluroxypyr from the spiked CPKO samples ranged from 91-107% with the relative values for the coefficient of variation ranging from 0.6 to 4.5%. The minimum detection limit of fluroxypyr in CPO and CPKO was 0.05 microg/g. The method was used to determine fluroxypyr residues from the field-treated samples of CPO and CPKO. When fluroxypyr was used for weed control in oil palm plantations no residue was detected in CPO and CPKO irrespective of the sampling interval and the dosage applied at the recommended or double the manufacturer's recommended dosage.
    Matched MeSH terms: Acetates/analysis*
  5. Halimah M, Tan YA, Aini K, Ismail BS
    J Environ Sci Health B, 2003 Jul;38(4):429-40.
    PMID: 12856925
    Improved methods for extraction and clean up of fluroxypyr residue in water have been established. Two methods of fluroxypyr extraction were used, namely, Direct Measurement of fluroxypyr and Concentration of fluroxypyr onto A Solid Phase Extraction (SPE) Adsorbent, followed by elution with solvent before determination of fluroxypyr. The recovery for Direct Measurement of fluroxypyr in water containing 8-100 microg L(-1), ranged from 86 to 110% with relative standard deviation of 0.7 to 2.15%. For the second method, three types of SPE were used, viz. C18, C18 end-capped and polyvinyl dibenzene (ISOLUTE ENV+). The procedure involved concentrating the analyte from fluroxypyr-spiked water at pH 3, followed by elution of the analyte with 4 mL of acentonitrile. The recovery of fluroxypyr from the spiked sample at 1 to 50 microg L(-1) after eluting through either C18 or C18 end-capped ranged from 40-64% (with relative standard deviation of 0.7 to 2.15) and 41-65% (with standard deviation of 1.52 to 11.9). The use of ISOLUTE ENV+, gave better results than the C18, C18 end-capped or the Direct Measurement Methods. The recovery and standard deviation of fluroxypyr from spiked water using ISOLUTE ENV+ ranged from 91-102% and 2.5 to 5.3, respectively.
    Matched MeSH terms: Acetates/analysis*
  6. Beckmann S, Luk AWS, Gutierrez-Zamora ML, Chong NHH, Thomas T, Lee M, et al.
    ISME J, 2019 03;13(3):632-650.
    PMID: 30323265 DOI: 10.1038/s41396-018-0296-5
    Despite the significance of biogenic methane generation in coal beds, there has never been a systematic long-term evaluation of the ecological response to biostimulation for enhanced methanogenesis in situ. Biostimulation tests in a gas-free coal seam were analysed over 1.5 years encompassing methane production, cell abundance, planktonic and surface associated community composition and chemical parameters of the coal formation water. Evidence is presented that sulfate reducing bacteria are energy limited whilst methanogenic archaea are nutrient limited. Methane production was highest in a nutrient amended well after an oxic preincubation phase to enhance coal biofragmentation (calcium peroxide amendment). Compound-specific isotope analyses indicated the predominance of acetoclastic methanogenesis. Acetoclastic methanogenic archaea of the Methanosaeta and Methanosarcina genera increased with methane concentration. Acetate was the main precursor for methanogenesis, however more acetate was consumed than methane produced in an acetate amended well. DNA stable isotope probing showed incorporation of 13C-labelled acetate into methanogenic archaea, Geobacter species and sulfate reducing bacteria. Community characterisation of coal surfaces confirmed that methanogenic archaea make up a substantial proportion of coal associated biofilm communities. Ultimately, methane production from a gas-free subbituminous coal seam was stimulated despite high concentrations of sulfate and sulfate-reducing bacteria in the coal formation water. These findings provide a new conceptual framework for understanding the coal reservoir biosphere.
    Matched MeSH terms: Acetates/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links