Displaying all 5 publications

Abstract:
Sort:
  1. Fazalul Rahiman SS, Morgan M, Gray P, Shaw PN, Cabot PJ
    PLoS One, 2016;11(4):e0153005.
    PMID: 27055013 DOI: 10.1371/journal.pone.0153005
    Dynorphin 1-17, (DYN 1-17) opioid peptide produces antinociception following binding to the kappa-opioid peptide (KOP) receptor. Upon synthesis and release in inflamed tissues by immune cells, DYN 1-17 undergoes rapid biotransformation and yields a unique set of opioid and non-opioid fragments. Some of these major fragments possess a role in immunomodulation, suggesting that opioid-targeted therapeutics may be effective in diminishing the severity of inflammatory disorders. This study aimed to examine the immunomodulatory effects of DYN 1-17 and major N-terminal fragments found in the inflammatory environment on nuclear factor-kappaB/p65 (NF-κB/p65) nuclear translocation and the release of interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) from lipopolysaccharide (LPS)-stimulated, differentiated THP-1 cells. The results demonstrate that NF-κB/p65 nuclear translocation was significantly attenuated following treatment with DYN 1-17 and a specific range of fragments, with the greatest reduction observed with DYN 1-7 at a low concentration (10 nM). Antagonism with a selective KOP receptor antagonist, ML-190, significantly reversed the inhibitory effects of DYN 1-17, DYN 1-6, DYN 1-7 and DYN 1-9, but not other DYN 1-17 N-terminal fragments (DYN 1-10 and 1-11) on NF-κB/p65 nuclear translocation. DYN 1-17 and selected fragments demonstrated differential modulation on the release of IL-1β and TNF-α with significant inhibition observed with DYN 1-7 at low concentrations (1 nM and 10 pM). These effects were blocked by ML-190, suggesting a KOP receptor-mediated pathway. The results demonstrate that DYN 1-17 and certain N-terminal fragments, produced in an inflamed environment, play an anti-inflammatory role by inhibiting NF-κB/p65 translocation and the subsequent cytokine release through KOP receptor-dependent and independent pathways.
    Matched MeSH terms: Active Transport, Cell Nucleus/drug effects
  2. Yeap WC, Namasivayam P, Ooi TEK, Appleton DR, Kulaveerasingam H, Ho CL
    Plant Cell Environ, 2019 05;42(5):1657-1673.
    PMID: 30549047 DOI: 10.1111/pce.13503
    Abiotic stress reduces plant growth and crop productivity. However, the mechanism underlying posttranscriptional regulations of stress response remains elusive. Herein, we report the posttranscriptional mechanism of nucleocytoplasmic RNA transport of stress-responsive transcripts mediated by EgRBP42, a heterogeneous nuclear ribonucleoprotein-like RNA-binding protein from oil palm, which could be necessary for rapid protein translation to confer abiotic stress tolerance in plants. Transgenic Arabidopsis overexpressing EgRBP42 showed early flowering through alteration of gene expression of flowering regulators and exhibited tolerance towards heat, cold, drought, flood, and salinity stresses with enhanced poststress recovery response by increasing the expression of its target stress-responsive genes. EgRBP42 harbours nucleocytoplasmic shuttling activity mediated by the nuclear localization signal and the M9-like domain of EgRBP42 and interacts directly with regulators in the nucleus, membrane, and the cytoplasm. EgRBP42 regulates the nucleocytoplasmic RNA transport of target stress-responsive transcripts through direct binding to their AG-rich motifs. Additionally, EgRBP42 transcript and protein induction by environmental stimuli are regulated at the transcriptional and posttranscriptional levels. Taken together, the posttranscriptional regulation of RNA transport mediated by EgRBP42 may change the stress-responsive protein profiles under abiotic stress conditions leading to a better adaptation of plants to environmental changes.
    Matched MeSH terms: Active Transport, Cell Nucleus/drug effects*
  3. Rostam MA, Shajimoon A, Kamato D, Mitra P, Piva TJ, Getachew R, et al.
    J. Pharmacol. Exp. Ther., 2018 04;365(1):156-164.
    PMID: 29438988 DOI: 10.1124/jpet.117.244483
    Transforming growth factor-β (TGF-β) is a pleiotropic growth factor implicated in the development of atherosclerosis for its role in mediating glycosaminoglycan (GAG) chain hyperelongation on the proteoglycan biglycan, a phenomenon that increases the binding of atherogenic lipoproteins in the vessel wall. Phosphorylation of the transcription factor Smad has emerged as a critical step in the signaling pathways that control the synthesis of biglycan, both the core protein and the GAG chains. We have used flavopiridol, a well-known cyclin-dependent kinase inhibitor, to study the role of linker region phosphorylation in the TGF-β-stimulated synthesis of biglycan. We used radiosulfate incorporation and SDS-PAGE to assess proteoglycan synthesis, real-time polymerase chain reaction to assess gene expression, and chromatin immunoprecipitation to assess the binding of Smads to the promoter region of GAG Synthesizing genes. Flavopiridol blocked TGF-β-stimulated synthesis of mRNA for the GAG synthesizing enzymes, and chondroitin 4-sulfotransferase (C4ST-1), chondroitin sulfate synthase-1 (ChSy-1) and TGF-β-mediated proteoglycans synthesis as well as GAG hyperelongation. Flavopiridol blocked TGF-β-stimulated Smad2 phosphorylation at both the serine triplet and the isolated threonine residue in the linker region. The binding of Smad to the promoter region of the C4ST-1 and ChSy-1 genes was stimulated by TGF-β, and this response was blocked by flavopiridol, demonstrating that linker region phosphorylated Smad can pass to the nucleus and positively regulate transcription. These results demonstrate the validity of the kinases, which phosphorylate the Smad linker region as potential therapeutic target(s) for the development of an agent to prevent atherosclerosis.
    Matched MeSH terms: Active Transport, Cell Nucleus/drug effects
  4. Rajajendram R, Tham CL, Akhtar MN, Sulaiman MR, Israf DA
    Mediators Inflamm, 2015;2015:176926.
    PMID: 26300589 DOI: 10.1155/2015/176926
    Asthma is associated with increased pulmonary inflammation and airway hyperresponsiveness. The interaction between airway epithelium and inflammatory mediators plays a key role in the pathogenesis of asthma. In vitro studies evaluated the inhibitory effects of 3-(2,5-dimethoxyphenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (DMPF-1), a synthetic chalcone analogue, upon inflammation in the A549 lung epithelial cell line. DMPF-1 selectively inhibited TNF-α-stimulated CC chemokine secretion (RANTES, eotaxin-1, and MCP-1) without any effect upon CXC chemokine (GRO-α and IL-8) secretion. Western blot analysis further demonstrated that the inhibitory activity resulted from disruption of p65NF-κB nuclear translocation without any effects on the mitogen-activated protein kinase (MAPK) pathway. Treatment of ovalbumin-sensitized and ovalbumin-challenged BALB/c mice with DMPF-1 (0.2-100 mg/kg) demonstrated significant reduction in the secretion and gene expression of CC chemokines (RANTES, eotaxin-1, and MCP-1) and Th2 cytokines (IL-4, IL-5, and IL-13). Furthermore, DMPF-1 treatment inhibited eosinophilia, goblet cell hyperplasia, peripheral blood total IgE, and airway hyperresponsiveness in ovalbumin-sensitized and ovalbumin-challenged mice. In conclusion, these findings demonstrate the potential of DMPF-1, a nonsteroidal compound, as an antiasthmatic agent for further pharmacological evaluation.
    Matched MeSH terms: Active Transport, Cell Nucleus/drug effects
  5. Ch'ng WC, Abd-Aziz N, Ong MH, Stanbridge EJ, Shafee N
    Cell Oncol (Dordr), 2015 Aug;38(4):279-88.
    PMID: 25930675 DOI: 10.1007/s13402-015-0229-5
    Newcastle disease virus (NDV) is an oncolytic virus that is known to have a higher preference to cancer cells than to normal cells. It has been proposed that this higher preference may be due to defects in the interferon (IFN) responses of cancer cells. The exact mechanism underlying this process, however, remains to be resolved. In the present study, we examined the antiviral response towards NDV infection of clear cell renal cell carcinoma (ccRCC) cells. ccRCC is associated with mutations of the von Hippel-Lindau tumor suppressor gene VHL, whose protein product is important for eliciting cellular responses to changes in oxygen levels. The most common first line treatment strategy of ccRCC includes IFN. Unfortunately, most ccRCC cases are diagnosed at a late stage and often are resistant to IFN-based therapies. Alternative treatment approaches, including virotherapy using oncolytic viruses, are currently being investigated. The present study was designed to investigate the mechanistic pathways underlying the response of ccRCC cells to oncolytic NDV infection.
    Matched MeSH terms: Active Transport, Cell Nucleus/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links