Affiliations 

  • 1 Department of Microbiology, Faculty of Biotechnology & Biomolecular Sciences, and Institute of Biosciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Malaysia
Cell Oncol (Dordr), 2015 Aug;38(4):279-88.
PMID: 25930675 DOI: 10.1007/s13402-015-0229-5

Abstract

Newcastle disease virus (NDV) is an oncolytic virus that is known to have a higher preference to cancer cells than to normal cells. It has been proposed that this higher preference may be due to defects in the interferon (IFN) responses of cancer cells. The exact mechanism underlying this process, however, remains to be resolved. In the present study, we examined the antiviral response towards NDV infection of clear cell renal cell carcinoma (ccRCC) cells. ccRCC is associated with mutations of the von Hippel-Lindau tumor suppressor gene VHL, whose protein product is important for eliciting cellular responses to changes in oxygen levels. The most common first line treatment strategy of ccRCC includes IFN. Unfortunately, most ccRCC cases are diagnosed at a late stage and often are resistant to IFN-based therapies. Alternative treatment approaches, including virotherapy using oncolytic viruses, are currently being investigated. The present study was designed to investigate the mechanistic pathways underlying the response of ccRCC cells to oncolytic NDV infection.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.