Displaying publications 1 - 20 of 322 in total

  1. Ong YS, Bañobre-López M, Costa Lima SA, Reis S
    Mater Sci Eng C Mater Biol Appl, 2020 Nov;116:111255.
    PMID: 32806240 DOI: 10.1016/j.msec.2020.111255
    Methotrexate (MTX), an anti-neoplastic agent used for breast cancer treatment, has restricted clinical applications due to poor water solubility, non-specific targeting and adverse side effects. To overcome these limitations, MTX was co-encapsulated with an active-targeting platform known as superparamagnetic iron oxide nanoparticles (SPIONs) in a lipid-based homing system, nanostructured lipid carrier (NLC). This multi-modal therapeutic regime was successfully formulated with good colloidal stability, bio- and hemo-compatibility. MTX-SPIONs co-loaded NLC was time-dependent cytotoxic towards MDA-MB-231 breast cancer cell line with IC50 values of 137 μg/mL and 12 μg/mL at 48 and 72 h, respectively. The MTX-SPIONs co-loaded NLC was internalized in the MDA-MB-231 cells via caveolae-mediated endocytosis in a time-dependent manner, and the superparamagnetic properties were sufficient to induce, under a magnetic field, a localized temperature increase at cellular level resulting in apoptotic cell death. In conclusion, MTX-SPIONs co-loaded NLC is a potential magnetic guiding multi-modal therapeutic system for the treatment of breast cancer.
    Matched MeSH terms: MCF-7 Cells
  2. Ananda Sadagopan SK, Mohebali N, Looi CY, Hasanpourghadi M, Pandurangan AK, Arya A, et al.
    J Exp Clin Cancer Res, 2015;34:147.
    PMID: 26643256 DOI: 10.1186/s13046-015-0266-y
    Natural compounds have been demonstrated to lower breast cancer risk and sensitize tumor cells to anticancer therapies. Recently, we demonstrated that vernodalin (the active constituent of the medicinal herb Centratherum anthelminticum seeds) induces apoptosis in breast cancer cell-lines. The aim of this work was to gain an insight into the underlying anticancer mechanism of vernodalin using in vitro and in vivo model.
    Matched MeSH terms: MCF-7 Cells
  3. Hamad Ali Hamad, Cheah, Yoke Kqueen, Nur Fariesha MD Hashim
    High invasive cancer cells are thought to recruit specialised actin-rich protrusions for invasion in metastasis process. These protrusions are termed invadopodia. To study invadopodia formation, one of the first challenges faced by researchers has been to optimise the cell line passage number in order to be used for the invadopodia assay. Therefore, this study aims to investigate the effects of the passage number on invadopodia formation in MDA-MB-231 breast cancer cell line. Invadopodia assay was used to achieve the aim of the study. The results provided evidence that invadopodia formation is affected by the high passage number. The cells were also tested with dimethyloxalylglycine (DMOG) a hypoxic mimicking agent which is known to be an invadopodia inducer, the results showed that the cells in low passage number (P7) treated with DMOG increase the cells forming invadopodia, while the cells with high passage number (P35) showed that DMOG fails to stimulate the cells to form invadopodia. Furthermore, the cells with high passage number after passage 15 are starting to lose the ability to degrade the gelatin. In conclusion, this study suggests that only cells with a low passage number, less than passage 15 should be used in the study of invadopodia formation to obtain the results in the search for molecular targets and signaling at invadopodia.
    Matched MeSH terms: MCF-7 Cells
  4. Jamil M, Mustafa IS, Sahul Hamid SB, Ahmed NM, Khazaalah TH, Godwin E, et al.
    Colloids Surf B Biointerfaces, 2023 Aug;228:113423.
    PMID: 37390675 DOI: 10.1016/j.colsurfb.2023.113423
    The novelty of this work is the conjugation of poly(ethylene) oxide (PEO) with the erbium oxide (Er2O3) nanoparticles using the electrospinning technique. In this work, synthesised PEO-coated Er2O3 nanofibres were characterised and evaluated for their cytotoxicity to assess their potential use as diagnostic nanofibres for magnetic resonance imaging (MRI). PEO has significantly impacted nanoparticle conductivity due to its lower ionic conductivity at room temperature. The findings showed that the surface roughness was improved over the nanofiller loading, implying an improvement in cell attachment. The release profile performed for drug-controlling purposes has demonstrated a stable release after 30 min. Cellular response in MCF-7 cells showed high biocompatibility of the synthesised nanofibres. The cytotoxicity assay results showed that the diagnostic nanofibres had excellent biocompatibility, indicating the feasibility for diagnosis purposes. With excellent contrast performance, the PEO-coated Er2O3 nanofibres developed novel T2 and T1-T2 dual-mode MRI diagnostic nanofibres leading to better cancer diagnosis. In conclusion, this work has demonstrated that the conjugation of PEO-coated Er2O3 nanofibres improved the surface modification of the Er2O3 nanoparticles as a potential diagnostic agent. Using PEO in this study as a carrier or polymer matrix significantly influenced the biocompatibility and internalisation efficiency of the Er2O3 nanoparticles without triggering any morphological changes after treatment. This work has suggested permissible concentrations of PEO-coated Er2O3 nanofibres for diagnostic uses.
    Matched MeSH terms: MCF-7 Cells
  5. Habsah M, Ali A, Lajis N, Sukari M, Yap Y, Kikuzaki H, et al.
    Malays J Med Sci, 2005 Jan;12(1):6-12.
    PMID: 22605941
    Phytochemical studies on rhizome of Etlingera elatior have resulted in the isolation of 1,7-bis(4-hydroxyphenyl)-2,4,6-heptatrienone (1), demethoxycurcumin (2), 1,7-bis(4-hydroxyphenyl)-1,4,6-heptatrien-3-one (3), 16-hydroxylabda-8(17),11,13-trien-16,15-olide (4), stigmast-4-en-3-one (5), stigmast-4-ene-3,6-dione (6), stigmast-4-en-6b-ol-3-one (7), 5α,8α-epidioxyergosta-6,22-dien-3β-ol (8). 1 and 4 were new compounds. Compounds 5 and 7 displayed high antitumour-promoting activity. Ethyl acetate extract showed a very significant cytotoxic activity against CEM-SS and MCF-7 cell lines (4 μg/ml and 6.25 μg/ml respectively). The antitumour-promoting activity was determined by EBV-EA assay and cytotoxic activity was determined by MTT assay.
    Matched MeSH terms: MCF-7 Cells
  6. Dahham SS, Al-Rawi SS, Ibrahim AH, Abdul Majid AS, Abdul Majid AMS
    Saudi J Biol Sci, 2018 Dec;25(8):1524-1534.
    PMID: 30591773 DOI: 10.1016/j.sjbs.2016.01.031
    Desert truffles are seasonal and important edible fungi that grow wild in many countries around the world. Truffles are natural food sources that have significant compositions. In this work, the antioxidant, chemical composition, anticancer, and antiangiogenesis properties of the Terfezia claveryi truffle were investigated. Solvent extractions of the T. claveryi were evaluated for antioxidant activities using (DPPH, FRAP and ABTS methods). The extracts cytotoxicity on the cancer cell lines (HT29, MCF-7, PC3 and U-87 MG) was determined by MTT assay, while the anti-angiogenic efficacy was tested using ex-vivo assay. All extracts showed moderate anticancer activities against all cancer cells (p 
    Matched MeSH terms: MCF-7 Cells
  7. Taher M, Salleh WMNHW, Alkhamaiseh SI, Ahmad F, Rezali MF, Susanti D, et al.
    Z Naturforsch C J Biosci, 2021 Jan 27;76(1-2):87-91.
    PMID: 32931451 DOI: 10.1515/znc-2020-0089
    A phytochemical investigation of the stem bark of Calophyllum canum resulted in the isolation of a new xanthone dimer identified as biscaloxanthone (1), together with four compounds; trapezifoliaxanthone (2), trapezifolixanthone A (3), taraxerone (4) and taraxerol (5). The structures of these compounds were determined via spectroscopic methods of IR, UV, MS and NMR (1D and 2D). The cytotoxicity of compounds 1-3 were screened against A549, MCF-7, C33A and 3T3L1 cell lines, wherein weak cytotoxic activities were observed (IC50 > 50 μm).
    Matched MeSH terms: MCF-7 Cells
  8. Lim YH, Oo CW, Koh RY, Voon GL, Yew MY, Yam MF, et al.
    Drug Dev Res, 2020 Jul 28.
    PMID: 32720715 DOI: 10.1002/ddr.21715
    In recent years, chalcones and their derivatives have become the focus of global scientists due to increasing evidence reported towards their potency in antitumor and anti-cancer. Here, the chalcones designed and synthesized in our present study were derived from the derivatives of naphthaldehyde and acetophenone. Both these precursors have been reported in demonstrating a certain degree of anticancer property. Also, the substituents on these precursors such as hydroxyl, methoxy, prenyl, and chloro were shown able to enhance the anticancer efficiency. Hence, it is the interest of the current study to investigate the anticancer potential of the hybrid molecules (chalcones) consisting of these precursors with different alkoxy substituents and with or without the fluorine moiety. Two series of chalcone derivatives were designed, synthesized, and characterized using the elemental analysis, IR, 1 H and 13 C NMR spectroscopy, subsequently evaluated for their anti-cancer activity. Interestingly, the results showed that the fluorinated chalcones 11-15 exhibited stronger cytotoxic activity towards the breast cancer cell lines (4T1) compared to non-fluorinated chalcone derivatives. Remarkably, the selectivity index obtained for these fluorinated chalcones derivatives against the breast cancer 4T1 cell line was higher than those exhibited by cisplatin, which is one of the most frequently deployed chemotherapy agents in current medical practice. These findings could provide an insight towards the potential of fluorinated chalcones being developed as an anti-cancer agent with moderate activity towards breast cancer cell and low inhibition of fibroblast cell at a concentration of 100 μM.
    Matched MeSH terms: MCF-7 Cells
  9. Hazirah, A.R., Abdah, M.A., Zainal, B.
    Malays J Nutr, 2013;19(2):223-232.
    Introduction: Cancer chemopreventive agents from natural sources have been actively investigated over the years to seek prevention against cancer. In this study, cocoa polyphenols extract (CPE) was examined to explore its antioxidant and cytotoxicity activities. Methods: CPE was analysed for total phenolic content (TPC) and antioxidant activity (DPPH radical scavenging activity and FRAP ferric-reducing antioxidant power assays). In vitro cytotoxicity effect of CPE
    against HepG2, HT-29, HeLa, MCF-7, MDA-MB-231 and WRL-68 cell lines after 48 h exposure was measured by MTT assay. Results: The study showed that CPE had higher total phenolic content (13560.0±420.1 mg GAE/100g dry weight of sample) than vitamin E (p
    Matched MeSH terms: MCF-7 Cells
  10. Nakkarach A, Foo HL, Song AA, Mutalib NEA, Nitisinprasert S, Withayagiat U
    Microb Cell Fact, 2021 Feb 05;20(1):36.
    PMID: 33546705 DOI: 10.1186/s12934-020-01477-z
    BACKGROUND: Extracellular metabolites of short chain fatty acids (SCFA) excreted by gut microbiota have been reported to play an important role in the regulation of intestinal homeostasis. Apart from supplying energy, SCFA also elicit immune stimulation in animal and human cells. Therefore, an attempt was conducted to isolate SCFA producing bacteria from healthy human microbiota. The anti-cancer and anti-inflammatory effects of extracellular metabolites and individual SFCA were further investigated by using breast, colon cancer and macrophage cells. Toxin, inflammatory and anti-inflammatory cytokine gene expressions were investigated by RT-qPCR analyses in this study.

    RESULTS: Escherichia coli KUB-36 was selected in this study since it has the capability to produce seven SCFA extracellularly. It produced acetic acid as the main SCFA. It is a non-exotoxin producer and hence, it is a safe gut microbiota. The IC50 values indicated that the E. coli KUB-36 metabolites treatment elicited more potent cytotoxicity effect on MCF7 breast cancer cell as compared to colon cancer and leukemia cancer cells but exhibited little cytotoxic effects on normal breast cell. Furthermore, E. coli KUB-36 metabolites and individual SCFA could affect inflammatory responses in lipopolysaccharide-induced THP-1 macrophage cells since they suppressed inflammatory cytokines IL-1β, IL-6, IL-8 and TNF-α well as compared to the control, whilst inducing anti-inflammatory cytokine IL-10 expression.

    CONCLUSION: SCFA producing E. coli KUB-36 possessed vast potential as a beneficial gut microbe since it is a non-exotoxin producer that exhibited beneficial cytotoxic effects on cancer cells and elicited anti-inflammatory activity simultaneously. However, the probiotic characteristic of E. coli KUB-36 should be further elucidated using in vivo animal models.

    Matched MeSH terms: MCF-7 Cells
  11. Salih, G.A., Ahmad-Raus, R., Shaban, M.N., Abdullah, N.
    Breast cancer is considered as one of the most common cancers all over the world. A huge effort has been made to create a safe and cost effective breast cancer treatment. All of these features exist in the plants sources. In this study, the effect of local vegetable salad, Premna serratifolia (Bebuas) against MCF-7 cells (human breast adenocarcinoma) was determined. The optimum condition to extract breast cancer cytotoxic compound from the plant was investigated and the exact cytotoxic compound was identified as well. To determine the plant cytotoxicity effect against MCF-7 cells, MTT assay was used. Two important parameters in the sonication extraction method which are duration of time and temperature were optimized by carrying out a series of experiments which were designed by Face Centered Central Composite Design (FCCCD). The extraction efficiency of each experiment was determined by measuring the yield of extract and the half maximal inhibitory concentration (IC50) of the extract against MCF-7 cells. The results obtained from the experiments were fitted to the second order polynomial model to generate equation that was used to determine best extraction processing condition. Based on the generated equation, the best sonication processing condition to extract the cytotoxic compound is at 30oC for 67 min. Analysis of variance (ANOVA) showed that the duration of extraction time has great influence (p
    Matched MeSH terms: MCF-7 Cells
  12. Boo L, Ho WY, Mohd Ali N, Yeap SK, Ky H, Chan KG, et al.
    PeerJ, 2017;5:e3551.
    PMID: 28717596 DOI: 10.7717/peerj.3551
    Breast cancer spheroids have been widely used as in vitro models of cancer stem cells (CSCs), yet little is known about their phenotypic characteristics and microRNAs (miRNAs) expression profiles. The objectives of this research were to evaluate the phenotypic characteristics of MDA-MB-231 spheroid-enriched cells for their CSCs properties and also to determine their miRNAs expression profile. Similar to our previously published MCF-7 spheroid, MDA-MB-231 spheroid also showed typical CSCs characteristics namely self-renewability, expression of putative CSCs-related surface markers and enhancement of drug resistance. From the miRNA profile, miR-15b, miR-34a, miR-148a, miR-628 and miR-196b were shown to be involved in CSCs-associated signalling pathways in both models of spheroids, which highlights the involvement of these miRNAs in maintaining the CSCs features. In addition, unique clusters of miRNAs namely miR-205, miR-181a and miR-204 were found in basal-like spheroid whereas miR-125, miR-760, miR-30c and miR-136 were identified in luminal-like spheroid. Our results highlight the roles of miRNAs as well as novel perspectives of the relevant pathways underlying spheroid-enriched CSCs in breast cancer.
    Matched MeSH terms: MCF-7 Cells
  13. Lee SY, Fazlina N, Tye GJ
    Anal Biochem, 2019 09 15;581:113352.
    PMID: 31260647 DOI: 10.1016/j.ab.2019.113352
    DNA-templated silver nanocluster (AgNC), a new promising fluorescence probe has gained importance in biosensing and bioimaging in recent years. We employed a label-free AgNC to detect an intracellular transcription factor known as forkhead box p3 (FOXP3), which is the master regulator of regulatory T cells (Tregs) suppressive function. We developed an optimized method for the detection of messenger ribonucleic acid (mRNA) of FOXP3 by hybridizing AgNC and G-rich to the target FOXP3 mRNA of a MCF-7 cells. MCF-7 cells are chosen as a model as it readily expresses FOXP3. The hybridized samples were examined with UV illuminator and further verified with fluorescence spectroscopy, fluorescence microscope and flow cytometry. The successful hybridization of a three-way junction with AgNC, G-rich and mRNA FOXP3 target generated an improved fluorescence intensity with a spectral shift. We have successfully delivered the green fluorescing AgNC and G-rich into MCF-7 cells, producing a shift to red fluorescing cells corroborated by flow cytometry results. In summary, our approach enables the detection of intracellular FOXP3 nucleic acid and holds considerable potential in establishing a non-lethal intracellular detection system which would be crucial for the isolation of regulatory T-cells (Tregs) when combined with other cell surface markers.
    Matched MeSH terms: MCF-7 Cells
  14. Teo GY, Rasedee A, Al-Haj NA, Beh CY, How CW, Rahman HS, et al.
    Saudi J Biol Sci, 2020 Feb;27(2):653-658.
    PMID: 32210684 DOI: 10.1016/j.sjbs.2019.11.032
    Erythropoietin receptors (EPORs) are present not only in erythrocyte precursors but also in non-hematopoietic cells including cancer cells. In this study, we determined the effect of fetal bovine serum (FBS) in culture medium on the EPOR expression and viability of the estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells. Using flow cytometry, we showed that the inclusion of 10% FBS in the medium increased the EPOR expressions and viabilities of MDA-MB-231 and MCF-7 cells. The MDA-MB-231 showed greater EPOR expression than MCF-7 cells, suggesting that the presence of ERs on cells is associated with poor expression of EPOR. Culture medium containing 10% FBS also caused increased number of breast cancer cells entering the synthesis phase of the cell cycle. The study also showed that rHuEPO treatment did not affect viability of breast cancer cells. In conclusion, it was shown that the inclusion of FBS in culture medium increased expression of EPOR in breast cancer cells and rHuEPO treatment had no effect on the proliferation of these cancer cells.
    Matched MeSH terms: MCF-7 Cells
  15. Jamil M, Mustafa IS, Ahmed NM, Sahul Hamid SB
    Biomater Adv, 2022 Dec;143:213178.
    PMID: 36368056 DOI: 10.1016/j.bioadv.2022.213178
    Biocompatible polymers have received significant interest from researchers for their potential in diagnostic applications. This type of polymer can perform with an appropriate host response or carrier for a specific purpose. The current study aims to fabricate and characterise poly(ethylene) oxide (PEO) nanofibres with different concentrations for cytotoxicity evaluation in human breast cancer cell lines (MCF-7) and to get an optimal PEO nanofibre concentration (permissible limit) as a suitable polymer matrix or carrier with potential use in diagnostic applications. The fabrication of PEO nanofibres was done using electrospinning and was characterised by structure and morphology, surface roughness, chemical bonding and release profiles. The functional effects of PEO nanofibres were evaluated with MTS assay and colony formation assay in MCF-7 cells. The results showed that viscosity plays a vital role in synthesising a polymer solution in electrospinning for producing beadless nanofibrous mats ranging from 4.7 Pa·s to 77.7 Pa·s. As the PEO concentration increases, the nanofibre diameter and thickness will increase, but the surface roughness will be decreased. The average fibre diameter for 5 wt% PEO, 6 wt% PEO and 7 wt% PEO nanofibres were 129 ± 70 nm, 185 ± 55 nm and 192 ± 53 nm, respectively. In addition, the fibre thickness for 4 wt% PEO, 5 wt% PEO, 6 wt% PEO and 7 wt% PEO nanofibres were 269 ± 3 μm, 664 ± 4 μm, 758 ± 7 μm and 1329 ± 44 μm, respectively. Contrarily, the surface roughness for 4 wt% PEO, 5 wt% PEO, 6 wt% PEO and 7 wt% PEO nanofibres were 55.6 ± 9 nm, 42.8 ± 6 nm, 42.7 ± 7 nm and 36.6 ± 1 nm, respectively. PEO nanofibres showed the same burst release pattern and rate due to the same molecular weight of PEO with a stable release rate profile after 15 min. It also demonstrates that the percentage of PEO nanofibre release increased with the increasing PEO concentration due to the fibre diameter and thickness. The findings showed that all PEO nanofibres formulations were non-toxic to MCF-7 cells. It is suggested that 5 wt% PEO nanofibre exhibited non-cytotoxic characteristics by maintaining the cell viability from dose 0-1000 μg/ml and did not induce the number of colonies. Therefore, 5 wt% PEO nanofibre is the optimal nanofibre concentration and was suggested as a suitable base polymer matrix or carrier with potential use for diagnostic purposes. The findings in this study have demonstrated the influence of cell growth and viability, including the effects of PEO nanofibre formulations on cancer progress characteristics to achieve a permissible PEO nanofibre concentration limit that can be a benchmark in medical applications, particularly diagnostic applications.
    Matched MeSH terms: MCF-7 Cells
  16. Abdel-Sattar OE, Allam RM, Al-Abd AM, Avula B, Katragunta K, Khan IA, et al.
    Sci Rep, 2023 Feb 15;13(1):2683.
    PMID: 36792619 DOI: 10.1038/s41598-023-29566-0
    The members of the genus Phyllanthus have long been used in the treatment of a broad spectrum of diseases. They exhibited antiproliferative activity against various human cancer cell lines. Breast cancer is the most diagnosed cancer and a leading cause of cancer death among women. Doxorubicin (DOX) is an anticancer agent used to treat breast cancer despite its significant cardiotoxicity along with resistance development. Therefore, this study was designed to assess the potential cytotoxicity of P. niruri extracts (and fractions) alone and in combination with DOX against naïve (MCF-7) and doxorubicin-resistant breast cancer cell lines (MCF-7ADR). The methylene chloride fraction (CH2Cl2) showed the most cytotoxic activity among all tested fractions. Interestingly, the CH2Cl2-fraction was more cytotoxic against MCF-7ADR than MCF-7 at 100 µg/mL. At sub-cytotoxic concentrations, this fraction enhanced the cytotoxic effect of DOX against the both cell lines under investigation (IC50 values of 0.054 µg/mL and 0.14 µg/mL vs. 0.2 µg/mL for DOX alone against MCF-7) and (1.2 µg/mL and 0.23 µg/mL vs. 9.9 µg/mL for DOX alone against MCF-7ADR), respectively. Further, TLC fractionation showed that B2 subfraction in equitoxic combination with DOX exerted a powerful synergism (IC50 values of 0.03 µg/mL vs. 9.9 µg/mL for DOX alone) within MCF-7ADR. Untargeted metabolite profiling of the crude methanolic extract (MeOH) and CH2Cl2 fraction exhibiting potential cytotoxicity was conducted using liquid chromatography diode array detector-quadrupole time-of-flight mass spectrometry (LC-DAD-QTOF). Further studies are needed to separate the active compounds from the CH2Cl2 fraction and elucidate their mechanism(s) of action.
    Matched MeSH terms: MCF-7 Cells
  17. Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M
    Molecules, 2023 Nov 14;28(22).
    PMID: 38005306 DOI: 10.3390/molecules28227585
    α-mangostin (AM) is a promising natural anticancer agent that can be used in cancer research. However, its effectiveness can be limited by poor solubility and bioavailability. To address this issue, chitosan-based nanoparticles (CSNPs) have been investigated as a potential delivery system to enhance the cytotoxicity to cancer cells and improve selectivity against normal cells. In this study, we developed folate-conjugated chitosan nanoparticles (F-CS-NPs) using a carbodiimide-based conjugation method to attach folate to chitosan (CS), which have different molecular weights. The NPs were crosslinked using tripolyphosphate (TPP) via ionic gelation. To characterize the F-CS-NPs, we utilized various analytical techniques, including transmission electron microscopy (TEM) to evaluate the particle size and morphology, Fourier-transform infrared spectroscopy (FTIR) to confirm the presence of functional groups, and ultraviolet-visible spectroscopy (UV-Vis) to measure the absorption spectrum and confirm the presence of folate. The particle size of AM-F-CS-NPs ranged from 180 nm to 250 nm, with many having favorable charges ranging from +40.33 ± 3.4 to 10.69 ± 1.3 mV. All NPs exhibited the same spherical morphology. The use of F-CS-NPs increased drug release, followed by a sustained release pattern. We evaluated the cytotoxicity of AM, AM-F-CS-HMW, and AM-F-CS-LMW NPs against MCF-7 cells and found IC50 values of 8.47 ± 0.49, 5.3 ± 0.01, and 4.70 ± 0.11 µg/mL, respectively. These results confirm the improved cytotoxicity of AM in MCF-7 cells when delivered via F-CS-NPs. Overall, our in vitro study demonstrated that the properties of F-CS-NPs greatly influence the cytotoxicity of AM in MCF-7 breast cancer cells (significantly different (p < 0.05)). The use of F-CS-NPs as a drug-delivery system for AM may have the potential to develop novel therapies for breast cancer.
    Matched MeSH terms: MCF-7 Cells
  18. Abdullah M, Rafiq A, Shahid N, Nasir Kalam M, Munir Y, Daoud Butt M, et al.
    Pak J Pharm Sci, 2023 Nov;36(6(Special)):1849-1858.
    PMID: 38264890
    Pharmaceutical substance sitagliptin has long been used to treat diabetes. However, subsequent researches have shown that sitagliptin has additional therapeutic effects. Anti-inflammatory effects are observed. Combining sitagliptin with biodegradable polymers like nanoparticles for chemotherapy may be effective. This method enhances therapeutic agent pharmacokinetics. This study tests sitagliptin (SIT) chitosan base nanoparticles against MCF-7 cancer cell lines for anti-cancer effects. Sitagliptin chitosan-based nanoparticles are tested for their ability to suppress MCF-7 cancer cell proliferation. Ionic gelation, a typical nanoparticle manufacturing method, was used. A detailed examination of the nanoparticles followed, using particle-size measurement, FTIR and SEM. Entrapment efficiency, drug-loading, and in-vitro drug release were assessed. Loaded with chitosan and sitagliptin, the nanoparticles averaged 500nm and 534nm in diameter. Sitagliptin has little effect on particle size. Chitosan-based Sitagliptin nanoparticles grew slightly, suggesting Sitagliptin is present. SIT-SC-NPs had 32% encapsulation efficiency and 30% drug content due to their high polymer-to-drug ratio. SEM analysis showed that both drug-free and sitagliptin-loaded nanoparticles are spherical, as shown by the different bands in the photos. The SIT-CS-NPs had a 120-hour release efficiency of up to 80%. This suggests that these nanoparticles could cure hepatocellular carcinoma, specifically MCF-7 cell lines.
    Matched MeSH terms: MCF-7 Cells
  19. Syed Abdul Rahman SN, Abdul Wahab N, Abd Malek SN
    PMID: 23762112 DOI: 10.1155/2013/257108
    Bioassay-guided isolation of the active hexane fractions of Curcuma zedoaria led to the identification of five pure compounds, namely, curzerenone (1), neocurdione (2), curdione (3), alismol (4), and zederone (5) and a mixture of sterols, namely, campesterol (6), stigmasterol (7), and β -sitosterol (8). Alismol has never been reported to be present in Curcuma zedoaria. All isolated compounds except (3) were evaluated for their cytotoxic activity against MCF-7, Ca Ski, and HCT-116 cancer cell lines and noncancer human fibroblast cell line (MRC-5) using neutral red cytotoxicity assay. Curzerenone and alismol significantly inhibited cell proliferation in human cancer cell lines MCF-7, Ca Ski, and HCT-116 in a dose-dependent manner. Cytological observations by an inverted phase contrast microscope and Hoechst 33342/PI dual-staining assay showed typical apoptotic morphology of cancer cells upon treatment with curzerenone and alismol. Both compounds induce apoptosis through the activation of caspase-3. It can thus be suggested that curzerenone and alismol are modulated by apoptosis via caspase-3 signalling pathway. The findings of the present study support the use of Curcuma zedoaria rhizomes in traditional medicine for the treatment of cancer-related diseases. Thus, two naturally occurring sesquiterpenoids, curzerenone and alismol, hold great promise for use in chemopreventive and chemotherapeutic strategies.
    Matched MeSH terms: MCF-7 Cells
  20. Nor SM, Sukari MA, Azziz SS, Fah WC, Alimon H, Juhan SF
    Molecules, 2013 Jul 08;18(7):8046-62.
    PMID: 23884135 DOI: 10.3390/molecules18078046
    Aminoanthraquinones were successfully synthesized via two reaction steps. 1,4-Dihydroxyanthraquinone (1) was first subjected to methylation, reduction and acylation to give an excellent yield of anthracene-1,4-dione (3), 1,4-dimethoxyanthracene-9,10-dione (5) and 9,10-dioxo-9,10-dihydroanthracene-1,4-diyl diacetate (7). Treatment of 1, 3, 5 and 7 with BuNH2 in the presence of PhI(OAc)2 as catalyst produced seven aminoanthraquinone derivatives 1a, b, 3a, and 5a-d. Amination of 3 and 5 afforded three new aminoanthraquinones, namely 2-(butylamino)anthracene-1,4-dione (3a), 2-(butylamino)anthracene-9,10-dione (5a) and 2,3-(dibutylamino)anthracene-9,10-dione (5b). All newly synthesised aminoanthraquinones were examined for their cytotoxic activity against MCF-7 (estrogen receptor positive human breast) and Hep-G2 (human hepatocellular liver carcinoma) cancer cells using MTT assay. Aminoanthraquinones 3a, 5a and 5b exhibited strong cytotoxicity towards both cancer cell lines (IC50 1.1-13.0 µg/mL).
    Matched MeSH terms: MCF-7 Cells/drug effects
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links